

Limited Detailed Site Investigation

369 Newport Road, Cooranbong

LAKE MACQUARIE CITY COUNCIL

Approved plans for

Development Consent No: DA/1214/2022

Date of Approval: 28/03/2025

NOT FOR CONSTRUCTION

Written by: Fletcher Harris (Graduate Environmental Scientist)

Reviewed by: Jake Duck (Environmental Scientist)

Email: office@hunterenviro.com.au

Report Ref: E0137-DSI-001-Rev0

Client: JC Subdivisions Pty Ltd

21 November 2023

Prepared for

JC Subdivisions Pty Ltd

Ph: 0417 028 268

Email: justin@azzplumbing.com.au

Prepared by

Hunter Environmental Consulting

ABN 16 661 108 014

3/62 Sandringham Avenue

PO Box 3127

Thornton NSW 2322

Ph: (02) 4067 4151

Email: office@hunterenviro.com.au

Web: hunterenviro.com.au

Project Details

Site Address:	369 Newport Road, Cooranbong
Project Type:	Limited Detailed Site Investigation

Project no	Report type	Report no	
E0137	DSI	001	

Report Register

Revision Number	Reported By	Reviewed By	Date
Rev0	FH	JD	21/11/2023

We confirm that the following report has been produced for JC Subdivisions Pty Ltd, based on the described methods and conditions within.

For and on behalf of Hunter Environmental Consulting,

Jake Duck

Environmental Scientist

Bachelor of Environmental Science and

Management

Executive Summary

Hunter Environmental Consulting (HEC) was engaged by JC Subdivisions Pty Ltd to undertake a Detailed Site Investigation (DSI) with soil sampling at the Site located at 369 Newport Road, Cooranbong (herein after referred to as "the Site").

The Site is currently proposed to undergo redevelopment in which will involve subdivision of the existing lot and addition of a second dwelling. The DSI is required in response to Lake Macquarie City Council Request For Information (RFI) for DA/1214/2022 in which has identified that significant earthworks have occurred onsite, with no record of development consent. In order to consider supporting the proposal for the redevelopment, the application shall be revised to demonstrate that the unauthorised filling is removed, and the site returned to its pre-filling levels.

This PSI includes the following elements:

- Review of historical aerial images of the Site and surrounding area
- Compilation of a historical title summary
- Review of a Section 10.7 Planning Certificate
- Review of publicly available environmental databases and legislative instruments
- Site inspection and interview with knowledgeable Site representative (if available)
- A Conceptual Site Model (CSM) with assessment of contamination and source-pathwayreceptor linkages
- Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required.

Detailed soil sampling was conducted to supplement the desktop assessment for contamination purposes. Soil sampling consisted of:

- Collection of ten (10) primary samples analysed for contaminants of potential concern (CoPC);
- Collection of one (1) duplicate sample for Quality Assurance / Quality Control (QA/QC) purposes;
 and
- Collection of one (1) rinsate sample for QA/QC purposes.

The detailed desktop review of available information and thorough Site inspection including detailed soil investigation have enabled the development of a CSM allowing assessment of potential health and environmental issues relating to the Site. Key findings were:

- 1. Visible signs of gross contamination were not observed during Site inspection and intrusive works with the exception of minor surface staining in one location; and
- 2. Contamination in shallow soils above the adopted site assessment criteria (SAC) were not identified at any of the sampling locations.

In summary, based on the desktop study and detailed intrusive sampling conducted at the Site, no indication of gross contamination has been identified.

Table of Contents

1		Intro	oduc	tion	6
	1.3	1	Back	kground	6
	1.2	2	Obje	ectives	6
	1.3	3	Scop	oe of Works	6
		1.3.	1	Limited Detailed Site Investigation	6
	1.4	4	Deta	ailed Soil Investigation	7
2		Site	Desc	ription	7
	2.2	1	Site	& Lot Identification	7
	2.2	2	Surr	ounding Land Use	8
3		Bacl	kgrou	und Data Review & Database Searches	8
	3.2	1	Sum	mary of Ownership & Site Use	8
	3.2	2	Hist	orical Photographs	9
	3.3	3	Тор	ography & Hydrology	10
		3.3.	1	Lithology & Geology	10
		3.3.	2	Hydrogeology	.11
	3.4	4	Che	mical Storage & Waste Production / Disposal	.11
	3.5	5	Ons	ite Database Searches	.11
		3.5.	1	Current & Former Environment Protection Licences	11
		3.5.	2	Heritage	.12
		3.5.	3	Contaminated Land Records	13
		3.5.	4	Naturally Occurring Asbestos	.13
		3.5.	5	Acid Sulfate Soils	.14
4		Data	a Qua	ality Objectives	.14
5		Site	Insp	ection	.15
6		Deta	ailed	Soil Investigation	.15
		6.1.	1	Sampling & Analysis	.15
	6.2	2	Ado	pted Site Assessment Criteria (SAC)	16
	6.3	3	Intru	usive Investigation Observations	16
	6.4	4	Ana	lytical Results	17

7	Ar	nalytic	al Data Quality Assessment	17
	7.1	San	nple Collection, Storage, Transport & Analysis	18
	7.	1.1	General	18
	7.	1.2	Holding Times	18
	7.	1.3	Sample Transport & Storage Temperature	18
	7.2	Fiel	d Intra-Laboratory Duplicate Assessment	18
	7.3	Lab	oratory Quality Assurance & Quality Control	18
	7.4	Dat	a Quality Summary	19
8	Co	oncept	rual Site Model	19
	8.1	SPR	Linkage Assessment	21
9	Co	onclusi	ons	22
10) Uı	nexpe	cted Finds	22
11	L Re	eport L	imitations	22
Re	eferer	ices		24

Annex List:

Annex A Site Figures

Annex B S10.7 Planning Certificate

Annex C Historical Title Documents

Annex D LotSearch Report

Annex E Borehole Logs

Annex F Tabulated Soil Results

Annex G Photographic Log

Annex H NATA Endorsed Laboratory Results

1 Introduction

1.1 Background

Hunter Environmental Consulting (HEC) was engaged by JC Subdivisions Pty Ltd to undertake a limited Detailed Site Investigation (DSI) with detailed soil sampling at 369 Newport Road, Cooranbong (herein after referred to as "the Site").

The Site is currently proposed to undergo redevelopment in which will involve subdivision of the existing lot and addition of a second dwellingThe DSI is required in response to Lake Macquarie City Council Request For Information (RFI) for DA/1214/2022 in which has identified that significant earthworks have occurred onsite, with no record of development consent. A Site Features Plan is presented as Figure 1 of **Annex A**.

1.2 Objectives

The objectives of this DSI were to investigate potential contaminant sources, pathways and receptors in relation to the Site as well as inform detailed consideration of potential risks to human health and/or the environment within the context of the most sensitive potential land use. For the purpose of the investigation, HIL-A has been adopted as the most sensitive land use (ie. Low density residential landuse).

This report has been prepared in general accordance with provisions for a DSI as defined within the NSW EPA (2022) Contaminated Land Guidelines: Sampling design part 1 – application (NSW EPA, 2022), the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA, 2020) and National Environment Protection (Assessment of Site Contamination) Measure (National Environmental Protection Council (NEPC), 2013).

All information collected informed the development of the CSM which provides a representation of potential sources of contamination and evaluate the CoPC; areas of potential contamination; potential human and ecological receptors; and potentially affected media (such as soil and groundwater).

1.3 Scope of Works

1.3.1 Limited Detailed Site Investigation

This PSI includes the following elements:

- Review of historical aerial images of the Site and surrounding area;
- Compilation of a historical title summary;
- Review of a Section 10.7 Planning Certificate;
- Review of publicly available environmental databases and legislative instruments;
- Site inspection and interview with knowledgeable Site representative (if available);
- A CSM with assessment of source-pathway-receptor linkages; and
- Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required

1.4 Detailed Soil Investigation

Detailed soil sampling was also conducted to supplement the desktop assessment for contamination purposes. Soil sampling consisted of:

- Collection of ten (10) primary samples analysed for CoPC;
- Collection of one (1) duplicate sample for QA/QC purposes; and
- Collection of one (1) rinsate sample for QA/QC purposes

Preparation of this report includes recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required.

2 Site Description

2.1 Site & Lot Identification

The Site is located at 369 Newport Road, Cooranbong, legally identified as Lot 1 on Deposited Plan (DP) 778019. The Site forms a irregular shaped block of approximately 2650m².

A summary of Site information is provided in **Table 2.1** below.

Table 2.1 - Site identification

Item	Description	
Current Site Owner	JC Subdivision Pty Ltd	
Site Address	369 Newport Road, Cooranbong	
Current Zoning	R2 Low Density Residential	
Proposed Land Use	R2 Low Density Residential	
Legal Description	Lot 1	
	DP 778019	
Local Government Authority	Lake Macquarie City Council	
Site Area	Approximately 2650m ²	
Elevation	7m Above Sea Level (ASL)	
Geographical Location	E 356816.695	
(GDA94-MGA56)	N 6339769.191	

Review of Lake Macquarie City Council Local Environmental Plan (LEP) 2014 together with the Planning Certificate under Section 10.7 Part 2 and 5 of the Environmental Planning and Assessment Act 1979 (attached as **Annex B**) provides the following information:

1. The Site is affected by heritage items, An item of environmental heritage, namely Aboriginal heritage

listed within the Aboriginal Heritage Information Management System (AHIMS), may affect the land. Aboriginal objects are protected under the National Parks and Wildlife Act 1974;

- 2. The Site and/or adjacent lots are not affected by land reserved for acquisition;
- 3. The Site is not affected by environmentally sensitive land or critical habitat;
- 4. The Site and/or adjacent lots are subject to flood planning constraints;
- 5. The Site and/or adjacent lots are subject to bushfire constraints;
- 6. The Site and/or adjacent lots are subject to an adopted a policy that may restrict the development of Contaminated or Potentially Contaminated land; and
- 7. There are no prescribed matters under section 59(2) of the Contaminated Land Management Act 1997 to be disclosed.

2.2 Surrounding Land Use

The Site is located predominantly within a residential area of Cooranbong, NSW. Review of satellite imagery identified surrounding land uses as summarised in **Table 2.2** below.

Table 2.2 - Summary of surrounding land use

Direction	Land Use	Distance
North	Residential	30m
East	Residential	Adjacent
South	Residential/undeveloped	Adjacent/50m
West	Residential	Adjacent

3 Background Data Review & Database Searches

3.1 Summary of Ownership & Site Use

Historical title searches completed for the Site provide a summary of ownership as described in **Table 3.1** below.

Table 3.1 - Summary of site ownership

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
1908	This parcel of land formed part of a road.	
24.10.1969	Road Closed	Gazette 24.10.1969
29.12.1969 (1969 to 1973)	Raymond George Rouse (Contractor) Margaret Eileen Rouse (Married Woman)	Volume 11219 Folio 94

13.06.1973 (1973 to 1980)	Lindsay Gordon Harper (Accountant) John Baptist Malfanti (Solicitor) S Bombardier Holdings Pty Limited	Volume 11219 Folio 94
27.06.1980 (1980 to 1980)	Peter Lyndsay (or Lindsay) Gordon Harper (Medical Practitioner) John Baptist Malfanti (Solicitor) S Bombardier Holdings Pty Limited (Transmission Application – not investigated)	Volume 11219 Folio 94
28.08.1980 (1980 to 1987)	Peter Lyndsay (or Lindsay) Gordon Harper (Medical Practitioner) Robert Leonardis Sennef (Butcher) (S Bombardier Holdings Pty Limited	Volume 11219 Folio 94
23.03.1987 (1987 to 2018)	Yvonne Borgas	Volume 11219 Folio 94 Now 1/778019
05.07.2018 (2018 to 2022)	Kane John William Ash Kristy Louise Slade	1/778019
16.09.2022 (2022 to date)	1/778019	

[#] Denotes current registered proprietor

Historical title documents sourced as part of this assessment are presented as **Annex C**.

3.2 Historical Photographs

Historical aerials and satellite images dating 1954-2023 provide a summary of development at the Site and within the surrounding area. Historical images are presented as part of **Annex D** and a summary of review in **Table 3.2** below.

Table 3.2 - Historical aerial review

Date	Summary
1954	Low quality black and white aerial, Site is undeveloped land, developed road adjacent north.
1966	Consistent with prior aerial.
1976	Low quality coloured aerial, removal of vegetation on Site, construction of small dwellings to the east of Site.
1984	Low quality black and white aerial consistent with prior aerial.
1994	Good quality coloured aerial, construction of residential dwelling on Site, further residential development north of Site.
2002	Consistent with prior aerial.
2007	High quality coloured aerial, addition of a likely storage shed adjacent south of the dwelling on Site.
2010	Consistent with prior aerial.
2016	Consistent with prior aerial.
2019	High quality coloured aerial, multiple stockpiled soils north side of Site, what appears to be further important soils covering the east/southeastern side of Site. Site appears to be storing vehicles.
2023	Consistent with prior aerial. Residential dwelling constructed to the east of site. Storage structure constructed to south of Site.

3.3 Topography & Hydrology

Topography of the area is characterised by undulating low hills and rises and gently inclined side slopes. Review of Google Earth Pro (2023) indicates the Site slightly slopes from 7m Above Sea Level (ASL) in the south to 10m ASL in the north. The closest surface water body identified is the Jigadee Creek located approximately 50m to the east of Site.

3.3.1 Lithology & Geology

Review of the NSW Office of Environment and Heritage soil landscape database—indicates that the Site falls within the Wyong Soil Landscape.

Review of the NSW Department of Industry, Resources & Energy database; NATMAP 1: 100,000 Geological Sheet indicates that the Site lies on the Alluvial floodplain deposits and Munmorah Conglomerate units. Typical lithology includes Silt, very fine- to medium grained lithic to quartz-rich sand, clay. Medium- to coarse-grained lithic to quartz-lithic sandstone, granule to pebble polymictic conglomerate; minor siltstone and white claystone, thin lenticular coal seams.

3.3.2 Hydrogeology

Review of the NSW Department of Primary Industries – Office of Water / Water Administration Ministerial Corporation database identified 4 registered bores within 2km of the Site. Bore details are presented in **Table 3.3** below.

Table 3.3 - Groundwater bore details

NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Distance	Direction
GW064116	Water Supply	Unknown	01/03/1987	21.3		311m	West
GW200765	Water Supply	Unknown	12/10/1980	8		399m	West
GW064033	Water Supply	Unknown	01/03/1987	49.4		1034m	South East
GW067263	Water Supply	Functioning	20/03/1989	10	3	1811m	South West

3.4 Chemical Storage & Waste Production / Disposal

The results of the SafeWork Dangerous Goods Search were not considered necessary due to the historical and current land use of the Site.

3.5 Onsite Database Searches

3.5.1 Current & Former Environment Protection Licences

A review of the licenced activities under the Protection of the Environment Operations act 1997 was completed on the 6th of November 2023.

A number of NSW EPA licensed activities have been conducted within proximity to the Site. The tables below list both former and current licensed activities and the type of licensed activity conducted.

Table 3.4 - Current licenced EPA activities

EPL	Organisation	Address	Activity	Distance (m)	Direction
6332	Lake Macquarie City Council	-	Other activities	46	Southeast
20987	Ray Johnsons Scrap Tyre Disposals Pty Ltd	2/23 Currans Road, Cooranbong, Nsw 2265	Waste Storage - Hazardous, Restricted Solid, Liquid, Clinical And	764	East

			Related Waste And Asbestos Waste		
20987	Ray Johnsons Scrap Tyre Disposals Pty Ltd	2/23 Currans Road, Cooranbong, Nsw 2265	Waste storage - other types of waste; Waste storage - waste tyres	764	East
20987	Ray Johnsons Scrap Tyre Disposals Pty Ltd	2/23 Currans Road, Cooranbong, Nsw 2265	Waste storage - waste tyres	764	East

Table 3.5 - Delicenced and former licenced EPA activities

Licence No	Organisation	Location	Status	Activity	Distance (m)	Direction
4653	Luhrmann Environment Management Pty Ltd	Waterways Throughout Nsw	Surrendered	Other Activities / Non Scheduled Activity - Application of Herbicides	46	South East
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	Other Activities / Non Scheduled Activity - Application of Herbicides	46	South East
6630	Sydney Weed & Pest Management Pty Ltd	Waterways Throughout Nsw - Prospect, Nsw, 2148	Surrendered	Other Activities / Non Scheduled Activity - Application of Herbicides	46	Southeast

3.5.2 Heritage

Review of the Heritage Data Source - Planning & Environment, indicates the Site is not affected by heritage items. The closest registered heritage item is House "Sunnyside" situated 346m southwest of the Site. Registered heritage items within the area are described in **Table 3.6** below.

Table 3.6 - Heritage item summary

Map Id	Name	EPI Name	Published Date	Commenced Date	Currency Date	Distance (m)	Direction
63	House "Sunnyside"	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	346	Southwest
73	Cottage	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	360	West
72	House "Three Bells"	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	920	Southwest

A figure detailing locations of heritage items listed above is presented within Lotsearch Report in **Annex D**.

3.5.3 Contaminated Land Records

A review of the NSW EPA Contaminated Land Record of Notices was completed on 6th of November 2023. This review identified that the Site is not subject to regulation by the NSW EPA under Section 60 of the *Contaminated Land Management (CLM) Act 1997* and similarly that there are no Sites within the surrounding area subject to regulation under the *CLM Act 1997*.

A review of the NSW EPA List of Contaminated Sites was completed 6th of November 2023. This review identified that the Site has not been notified to the EPA as a contaminated Site, however there is a service station 238m northwest which has been notified.

The findings of these reviews indicate that the Site is unlikely to be impacted by contamination known to the EPA.

3.5.4 Naturally Occurring Asbestos

NSW Department of Industry, Resources & Energy (2022) identifies that the Site does not fall in an area known to contain naturally occurring asbestos.

3.5.5 Acid Sulfate Soils

Review of the ePlanning Spatial Viewer online database (2020) identifies the Site as not being within an acid sulfate soils (ASS) area. Additionally, a review of the eSPADE online database (2022) identifies the Site as being within an area of no known acid sulfate occurrence.

4 Data Quality Objectives

Data quality objectives (DQOs) have been developed to define the type and quality of data required to achieve the project objectives outlined in **Section 1.2**. The DQOs have been prepared in line with the DQO process outlined in the NEPM (2013) which define minimum data requirements and quality control procedures. The proposed application of the seven-step DQO approach to this project is described in **Table 4.1**.

The DQO process is validated in part by QA/QC assessment. The QA/QC assessment for this project is summarized in **Section 7** of the report.

Table 4.1 - Data Quality Objectives

Step	Input
1. State the problem	The presence of uncontrolled fill material of unknown origin used on Site could potentially contaminate soil and groundwater, presenting a risk to human health and/or the environment. Further site investigation is required to assess contamination at the site and evaluate suitability of the site for the proposed redevelopment.
2. Identify the Decisions	 The objective of this investigation is to determine if the historic land uses at the Site or surrounding area have resulted in contamination at levels that may impact the proposed development. The following decisions need to be addressed: Is there a potential for soil contamination to be present at the Site which may pose risks to human health and environment? Is remediation or management actions required to render the Site suitable for the proposed redevelopment?
3. Identify Inputs into the Decision	 The primary inputs to make the above decisions are as follows: Review of background information collected for the Site; Advancement of eight (8) boreholes to a maximum depth of 2m Below ground level (BGL) to provide systematic coverage of the identified fill area; Observation of environmental variables including soil type, odours and staining; Laboratory analysis of soil for CoPC identified as part of desktop assessment and site walkover observations; and Field and laboratory quality assurance/quality control data.
4. Study Boundary	The investigation is limited to the Site boundary as presented in <i>Figure 1</i> . The vertical study boundary is up to 2m (maximum depth of borehole before termination). Groundwater was not encountered during the drilling works.

5. Develop a Decision Rule	The analytical results will be assessed against screening criteria as outlined in Section 6.2 of this report for soil samples.
6. Specific Limits on Decision Errors	To limit the potential for decision errors, a range of quality assurance processes were adopted. A quantitative assessment of the potential for false negatives / false positives and/or under or over recognizing of analytical results was undertaken using the data quality assurance information collected. Data quality was assessed in general in accordance with guidance detailed in Schedule B(3) of the NEPM (2013).
7. Optimise the Design for Obtaining Data	The DQOs have been developed based on a review of existing data, and discussions with the client. If data gathered during the assessment indicated that the objectives of the works are not being met, the sampling design (including sampling pattern, type of samples and analytes) would be adjusted accordingly using feedback (where necessary) from project stakeholders.

5 Site Inspection

HEC attended the Site on the 9th of November 2023 to consolidate the desktop review described in the sections above. The Site visit included a detailed visual inspection of the Site surface and infrastructure. Key findings are presented below:

At the time of the investigation, the Site consisted of a small residential dwelling, multiple storage structures, heavy machinery/trucks and two fill mounds separated by a gravel fill driveway. At the time of the investigation tenants were occupying the property.

Topographically the Site was mostly flat, with the exception of the fill mounds.

No signs of gross contamination were observed during the Site walkover, some minor surface staining was observed on the northern fill mound, in close proximity to the heavy machinery. The southern fill mound consisted of gravel, whereas the northern mound was grassed over at the time of the investigation.

6 Detailed Soil Investigation

As stated in **Section 1.3**, a soil investigation was commissioned following desktop review of information.

The sampling density and analytical schedule generated as part of this intrusive investigation meets the minimum requirements of a DSI as outlined within the NSW EPA Contaminated Land Guidelines - Consultants Reporting on Contaminated Sites (2020).

All works were conducted in accordance NEPC (2013) best standard practices and Hunter Environmental Consulting's relevant Standard Operating Procedures (SOPs). Methodologies are outlined in the following sub-sections. Soil Investigation locations are presented in Figure 1 of **Annex A**.

6.1.1 Sampling & Analysis

Sample locations were selected using a combined grid-based sampling strategy with judgemental targeted sampling of identified fill mounds. Sampling locations and CoPC were targeted following the

desktop review of historical data pertaining to the Site's historical use. Some limitations to targeted locations were present such as existing infrastructure including heavy machinery, maintenance equipment and storage structures. Given that the objective of this investigation was to address fill material placed on the Site, sample locations were limited to areas where fill material was present.

Boreholes were advanced using a 90mm solid flight auger, drilled to target depth and sampled, using a fresh pair of nitrile gloves between sampling locations. Auger was decontaminated between investigation locations using a phosphate free cleaning agent (DeCon90) and a triple rinse methodology.

Given that fill materials were observed to be shallow across the Site and that groundwater was not encountered during the drilling works, a groundwater investigation was not considered necessary in context of the Site condition.

6.2 Adopted Site Assessment Criteria (SAC)

Tier 1 assessment criteria relevant to the proposed land use have generally been adopted from the NEPM (2013). Specifically, this includes:

- The CRC CARE (2011) health screening levels (HSLs) for petroleum hydrocarbons at 0 to <1=2m below ground level in sand/silt/clay, adopted to assess potential vapour risks to human receptors
- 2. The ASC NEPM (2013) health investigation levels (HILs), adopted to evaluate potential direct contact risks associated with the presence of other CoPC in soil (i.e. metals and PAH)
- 3. The CRC CARE (2011) assessment criteria for direct contact with petroleum hydrocarbons by future receptors
- 4. The NEPM (2013) ecological investigation levels (EILs) for inorganics to assess risks to ecological receptors
- 5. The NEPM (2013) ecological screening levels for coarse soil for hydrocarbon compounds to assess risks to ecological receptors

A summary of SAC adopted along with their associated values are presented in Table 1 and Table 2 of **Annex F**.

6.3 Intrusive Investigation Observations

Inspection of boreholes and soil cuttings infers the presence of fill material across the investigation area to a maximum depth of 1.4m BGL (BH6). The fill material primarily consisted of silty gravelly clay. The fill layer was underlain by residual clay.

Fill material encountered within Borehole two (BH2) had evidence of minor staining, however no odours were evident within the soil.

No Asbestos Containing Material (ACM) was encountered within any of the boreholes or on the surface of the Site.

Borelogs recorded during the intrusive investigation are provided as **Annex E**.

6.4 Analytical Results

A total of ten (10) primary samples were submitted for chemical analysis for a range CoPC including:

- Heavy Metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel & Zinc);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Xylene and Ethylbenzene (BTEX);
- Polyaromatic Hydrocarbons (PAH);
- Organophosphorus Pesticides (OPP) and Organochlorine Pesticides (OCP); and
- Polychlorinated Biphenyls (PCBs).

The results of the analysis of the ten (10) primary soils samples indicate that all analytes were below the Limit of Reporting (LOR) for BTEX, OC/OP Pesticides, and PCBs, therefore below the adopted Site Assessment Criteria (SAC).

Detections were reported for heavy metals above the LOR but were acceptable under the adopted SAC.

Detections were reported for PAH (BaP, Carcinogenic PAHs and Total PAH) above the LOR but were acceptable under the adopted SAC.

One detection was reported for TRH (F3) above the LOR but were acceptable under the adopted SAC.

Soil analytical results are included in Table 1 and Table 2 of **Annex F**. All samples returned results which were acceptable under the adopted SAC for the low density residential.

7 Analytical Data Quality Assessment

The quality of analytical data presented within this report has been assessed with reference to the following issues:

- 1. Sampling technique
- 2. Preservation and storage of samples upon collection and transport to the laboratory
- 3. Sample holding times
- 4. Analytical procedures
- 5. Laboratory limit of reporting (LOR)
- 6. Laboratory quality assurance (QA) procedures
- 7. The occurrence of apparently unusual or anomalous results

A review of these items was conducted to assess data in terms of completeness, representativeness, comparability, accuracy and precision. A discussion of the data quality assessment related to the items listed above is provided in the subsections that follow.

7.1 Sample Collection, Storage, Transport & Analysis

7.1.1 General

Samples were collected, stored and transported to the laboratory in accordance with HEC's SOPs which are consistent with guidelines provided in the NEPM (2013). All samples were collected in appropriate containers provided by the laboratory.

7.1.2 Holding Times

Laboratory analysis was undertaken within specified holding times in accordance with Schedule B3 of the NEPM (2013) and using NATA accepted analytical procedures.

7.1.3 Sample Transport & Storage Temperature

In accordance with Schedule B3 of the NEPM (2013), all samples were chilled during transport to the laboratory and evidence of chilling was recorded on the sample receipt documentation for the laboratory.

7.2 Field Intra-Laboratory Duplicate Assessment

Relative Percentage Differences (RPDs) were calculated between the primary sample concentration and its corresponding intra-laboratory duplicate. The RPD acceptance criteria is 30% however it is noted that higher variations can be expected for organic analysis, samples with low analyte concentrations or non-homogenous samples (NEPM 2013). As such, the primary laboratory RPD acceptance criteria were used and are as follows:

- 1. Results <10 times the LOR: No Limit
- 2. Results between 10-20 times the LOR: RPD must lie between 0-50%
- 3. Results >20 times the LOR: RPD must lie between 0-30%

One intra-laboratory duplicate sample was collected as part of this investigation. Given that the purpose of the sampling works was to provide indications as to the presence/absence of contamination, collection of 1 field duplicate per 20 primary samples was considered appropriate.

All RPD results were within the acceptable range. The field QA/QC is considered acceptable for the investigation. Sample and RPDs results are included in Table 3 of **Annex F**.

7.3 Laboratory Quality Assurance & Quality Control

Laboratory QA/QC procedures and results are detailed in the certified laboratory results contained in **Annex H**. The analytical methods implemented by the laboratories were reported to be consistent with the scope of their NATA accreditation and consistent with Schedule B3 of the ASC NEPM (2013). The laboratory generally reported an adequate range and frequency of data quality information (including laboratory duplicates and control samples).

The reported laboratory data quality was considered acceptable and reliable to meet the objectives of this assessment.

7.4 Data Quality Summary

Overall, the data from this investigation is considered to be of sufficient quality to serve as a basis for interpretation as part of this assessment.

8 Conceptual Site Model

A CSM is a representation of site related information regarding contaminant sources, exposure pathways and human and environmental receptors. A CSM facilitates consideration of risks to human health and the environment associated with site contamination through assessment of source—pathway—receptor linkages. A CSM based on the understanding of site history and environmental setting is presented in the following sections.

Table 8.1 Potential Sources & Associated Contaminants of Concern

Primary Sources	CoC	Secondary Sources	Transport Mechanisms	Exposure Route	Receptors
Imported Fill materials (surficial contamination)	TRHBTEXHeavy MetalsPAH	Impacted soils at depth	Leaching to underlying soils	 Dermal Contact or incidental ingestion of soil Inhalation of dust Plant uptake Leaching to groundwater 	 Current and future site users Future construction/maintenance workers Users and occupants of adjoining land Ecological (Uptake of terrestrial Flora)
Storage of heavy machinery (surficial contamination)	TRHBTEXHeavy Metals	Impacted soils at depth	Leaching to underlying soils	 Dermal Contact or incidental ingestion of soil Plant uptake Leaching to groundwater 	 Current and future site users Future construction/maintenance workers Users and occupants of adjoining land Ecological (Uptake of terrestrial Flora)

8.1 SPR Linkage Assessment

A source-pathway-receptor (SPR) linkage is present when a pathway links a source with a receptor. These linkages are considered complete where a risk to the identified receptors may exist, now or in the future.

Table 8.2 – SPR Assessment

Receptor/Media	Exposure Pathway	Comments
Human - Site Users including Construction / Maintenance workers disturbing the soil and	Considered Incomplete	CoPC in exceedance of the adopted SAC were not identified in any of the soil samples analysed at the site.
building		The exposure pathways to sensitive human receptors are considered incomplete.
Ecological	Considered Incomplete	Ecological receptors at the site are considered to be limited to the uptake of terrestrial flora.
		CoPC in exceedance of the adopted SAC were not identified in any of the soil samples analysed at the site.
		The exposure pathways to sensitive ecological receptors are considered incomplete.
Groundwater	Considered Incomplete	Groundwater was not assessed as part of this investigation; given that fill material was observed to be shallow across the Site and given CoPC in exceedance of the adopted SAC were not identified in any of the soil samples analysed at the site.
		It is considered unlikely that contamination of groundwater on Site would be likely in context of the identified Fill material assessed as part of this investigation.

9 Conclusions

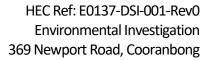
The detailed desktop review of available information and thorough Site inspection including detailed soil investigation have enabled the development of a conceptual Site model allowing assessment of potential health and environmental issues relating to the Site. Key findings were:

- 1. Visible signs of gross contamination were not observed during Site inspection and intrusive works with the exception of minor surface staining in one location; and
- 2. Contamination in shallow soils above the adopted site assessment criteria (SAC) were not identified at any of the sampling locations.

In summary, based on the desktop study and detailed soil sampling conducted on the Site, no indication of gross contamination has been identified at the Site.

Given that all soil samples analysed as part of this DSI were reported acceptable under the adopted SAC, a Remedial Action Plan (RAP) is not considered necessary for the removal of Fill materials onsite. However, due to the material impacting the validity of flood modelling, HEC recommends the removal of Fill material as required (to the depth of residual soils) and disposal of generated material as General Solid Waste (CT1) in accordance with the NSW EPA 2014 Waste Classification guidelines.

The material should be delivered to a suitable receiving facility licensed to accept this form of waste. Delivery dockets should be retained and provided to Council to validate the removal works. Given that no samples exceeded the adopted SAC (HIL/HSL-A) within the DSI, validation samples of surface soils following removal works is not considered to be warranted to assist in the adequate removal of soil, rather, a visual inspection of the site surface following the removal works may be satisfactory, along with delivery dockets to ensure the site topography has been returned to natural levels.


10 Unexpected Finds

The presence of any unexpected finds would be highlighted during development works by the observation of any unusual physical (e.g staining, fill material, asbestos-containing material) or sensory characteristics of the soil. In the event that any significant unknown type of material is identified, site works should be stopped in that area and an assessment of the material and its likely impact on the CSM would be undertaken by an appropriately qualified environmental consultant immediately to prepare a suitable response to the occurrence. All additional works should be documented and detailed in the validation report.

11 Report Limitations

HEC considers that the objectives of the original scope as presented in quote EQ0324 of the investigation have been achieved.

The analytical data and recommendations within the above report are subjected to the specific sampling and testing that was undertaken at the time of the current investigation. It should be noted that underlying Site soil conditions can vary significantly across a Site and the environment can change over

time. If conditions encountered during intrusive works are different to those contained in this report HEC should be contacted immediately for Site reassessment.

If you have any further questions about this report, please contact the undersigned.

For and on behalf of

Hunter Environmental Consulting

Reported by:

Fletcher Harris

Environmental Scientist

Bachelor of Environmental Science and

Management

Reviewed by:

Jake Duck

Environmental Scientist

Bachelor of Environmental Science and

Management

References

National Environment Protection Council (NEPC), (2013) *National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2: Guideline On-site Characterisation.*

NSW EPA (2020) Contaminated Land Guidelines: Guidelines for Consultants Reporting on Contaminated Land.

NSW EPA (2022) Contaminated Land Guidelines: Sampling Design Part 1 – Application.

NSW EPA (1997). Contaminated Land Management Act 1997.

NSW EPA (2017) *Naturally Occurring Asbestos in NSW*https://trade.maps.arcgis.com/apps/PublicInformation/index.html?appid=87434b6ec7dd4abababa64d8e64dfb06 accessed 06/11/2023.

NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying Waste.

Lotsearch (2022) Enviro Professional, Reference: LSO49804 EP-06 Nov 2023 08:54:19.

State of NSW and Department of Planning, Industry and Environment (2022) eSPADE v2.2 https://www.environment.nsw.gov.au/eSpade2Webapp accessed 06/11/2023.

CSIRO (2017) Atlas of Australian Acid Sulfate Soils.

State of NSW and Department of Planning, Industry and Environment (2020) ePlanning Spatial Viewer https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-property/address accessed 06/11/2023.

Annex A

Detailed Site Investigation 369 Newport Road, Cooranbong HEC Ref:E0137

Note:

(1) Base layer sourced from NearMap (2023)

Figure 1: Site Plan

Borehole Location

Annex B

7 November 2023

LOTSEARCH PTY LTD Level 3 68 Alfred St MILSONS POINT NSW 2061 Our Ref:163123 Your Ref: LS049804:173372 ABN 81 065 027 868

PLANNING CERTIFICATE UNDER THE **ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979**

Receipt No:

13024118

Receipt Date:

2 November 2023

DESCRIPTION OF LAND

Address:

369 Newport Road, COORANBONG NSW 2265

Lot Details:

Lot 1 DP 778019

Parish:

Coorumbung

County:

Northumberland

For: MORVEN CAMERON

GENERAL MANAGER

126 – 138 Main Road T 02 4921 0333

Speers Point NSW 2284 BOX 1906 HRMC NSW 2310 W lakemac.com.au

E council@lakemac.nsw.gov.au

ADVICE PROVIDED IN ACCORDANCE WITH SUBSECTION (2)

1 Names of Relevant Planning Instruments and Development Control Plans

(1) The name of each environmental planning instrument and development control plan that applies to the carrying out of development on the land.

Lake Macquarie Local Environmental Plan 2014

Lake Macquarie Development Control Plan 2014

State Environmental Planning Policy (Biodiversity and Conservation) 2021 -

Chapter 4 Koala habitat protection 2021

State Environmental Planning Policy (Biodiversity and Conservation) 2021 -

Chapter 6 Bushland in urban areas

State Environmental Planning Policy (Biodiversity and Conservation) 2021 -

Chapter 7 Canal estate development

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Housing) 2021

State Environmental Planning Policy (Industry and Employment) 2021 –

Chapter 3 Advertising and signage

State Environmental Planning Policy (Planning Systems) 2021 -

Chapter 2 State and regional development

State Environmental Planning Policy (Planning Systems) 2021 –

Chapter 4 Concurrences and consents

State Environmental Planning Policy (Precincts—Central River City) 2021 –

Chapter 2 State significant precincts

State Environmental Planning Policy (Precincts-Eastern Harbour City) 2021 -

Chapter 2 State significant precincts

State Environmental Planning Policy (Precincts-Regional) 2021

Chapter 2 State significant precincts

State Environmental Planning Policy (Precincts—Western Parkland City) 2021 -

Chapter 2 State significant precincts

State Environmental Planning Policy (Primary Production) 2021 –

Chapter 2 Primary production and rural development

State Environmental Planning Policy (Resilience and Hazards) 2021 -

Chapter 2 Coastal management

LMCC Page 2 of 19

State Environmental Planning Policy (Resilience and Hazards) 2021 –

Chapter 3 Hazardous and offensive development

State Environmental Planning Policy (Resilience and Hazards) 2021 -

Chapter 4 Remediation of land

State Environmental Planning Policy (Resources and Energy) 2021 –

Chapter 2 Mining, petroleum production and extractive industries

State Environmental Planning Policy (Transport and Infrastructure) 2021 -

Chapter 2 Infrastructure

State Environmental Planning Policy (Transport and Infrastructure) 2021 –

Chapter 3 Educational establishments and child care facilities

State Environmental Planning Policy No. 65 – Design Quality of Residential Apartment Development

(2) The name of each proposed environmental planning instrument and draft development control plan, which is or has been subject to community consultation or public exhibition under the Act, that will apply to the carrying out of development on the land.

Lake Macquarie Draft Development Control Plan 2014

- (3) Subsection (2) does not apply in relation to a proposed environmental planning instrument or draft development control plan if
 - (a) it has been more than 3 years since the end of the public exhibition period for the proposed instrument or draft plan, or
 - (b) for a proposed environmental planning instrument—the Planning Secretary has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved.
- (4) In this section, proposed environmental planning instrument includes a planning proposal for a Local Environmental Plan or a Draft environmental planning instrument.

2 Zoning and land use under relevant Local Environmental Plans

- (1) The following answers (a) to (f) relate to the instrument (see 1(1) above).
- (a) (i) The identity of the zone applying to the land.
 - R2 Low Density Residential

under Lake Macquarie Local Environmental Plan 2014

(ii) The purposes for which the Instrument provides that development may be carried out within the zone without the need for development consent.

Exempt development as provided in Schedule 2; Home-based child care; Home occupations

LMCC Page 3 of 19

(iii) The purposes for which the Instrument provides that development may not be carried out within the zone except with development consent.

Bed and breakfast accommodation; Boarding houses; Boat sheds; Building identification signs; Business identification signs; Centre-based child care facilities; Community facilities; Dual occupancies; Dwelling houses; Emergency services facilities; Environmental facilities; Environmental protection works; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Health consulting rooms; Home businesses; Home industries; Hostels; Kiosks; Neighbourhood shops; Oyster aquaculture; Places of public worship; Pond-based aquaculture; Recreation areas; Respite day care centres; Roads; Secondary dwellings; Semi-detached dwellings; Seniors housing; Sewage reticulation systems; Sewage treatment plants; Shop top housing; Tank-based aquaculture; Water recreation structures; Water recycling facilities; Water supply systems

(iv) The purposes for which the Instrument provides that development is prohibited within the zone.

Any other development not specified in item (ii) or (iii)

NOTE:

The advice in sections (a) above relates only to restrictions that apply by virtue of the zones indicated. The Lake Macquarie LEP 2014 includes additional provisions that require development consent for particular types of development, or in particular circumstances, irrespective of zoning.

(b) Whether additional permitted uses apply to the land,

Nc

(c) Whether development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

There are no development standards applying to the land that fix minimum land dimensions for the erection of a dwelling house.

(d) Whether the land is in an area of outstanding biodiversity value under the *Biodiversity Conservation Act 2016*.

No

(e) Whether the land is in a conservation area (however described).

No

(f) Whether an item of environmental heritage (however described) is situated on the land.

Local Environmental Plan 2014 Schedule 5 Part 1 Heritage Items

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 1 Heritage items.

LMCC Page 4 of 19

Local Environmental Plan 2014 Schedule 5 Part 2 Heritage conservation areas

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 2 Heritage conservation areas.

Local Environmental Plan 2014 Schedule 5 Part 3 Archaeological sites

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 3 Archaeological sites.

Local Environmental Plan 2014 Schedule 5 Part 4 Landscape Items

There are no items listed for this land under Local Environmental Plan 2014 Schedule 5 Part 4 Landscape items.

Local Environmental Plan 2004 Schedule 4 Part 1 Heritage Items

There are no heritage items listed for this land within Local Environmental Plan 2004 Schedule 4 Part 1.

Local Environmental Plan 2004 Part 11 Clause 150 Environmental Heritage

There are no heritage items listed for this land within Local Environmental Plan 2004 Part 11 Clause 150 – South Wallarah Peninsula.

Local Environmental Plan 2014 Heritage Map

The land is not identified as a Village Precinct on the Heritage Map.

NOTE:

An item of environmental heritage, namely Aboriginal heritage, listed within the Aboriginal Heritage Information Management System (AHIMS), may affect the land. Aboriginal objects are protected under the National Parks and Wildlife Act 1974. If Aboriginal objects are found during development, works are to stop and the Office of Environment and Heritage (OEH) contacted immediately. For further information and to access the AHIMS registrar, refer to http://www.environment.nsw.gov.au

- (2) The following answers relate to the Draft Instrument (see 1(2) above).
- (a) Nil

NOTE:

The advice in section (a) above relates only to restrictions that apply by virtue of the zones indicated. The Draft instrument may include additional provisions that require development consent for particular types of development, or in particular circumstances, irrespective of zoning.

(b) Whether draft additional permitted uses apply to the land No

(c) Whether any draft development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

LMCC Page 5 of 19

There are no development standards applying to the land that fix minimum land dimensions for the erection of a dwelling house.

(d) Whether the land is in a draft area of outstanding biodiversity value under the Biodiversity Conservation Act 2016,

No

(e) Whether the land is in a draft conservation area (however described).

No

(f) Whether a draft item of environmental heritage (however described) is situated on the land.

No

3 Contributions Plans

(1) The name of each contributions plan under the Act, Division 7.1 applying to the land, including draft contributions plans.

Lake Macquarie City Council Development Contributions Plan - Morisset Contributions Catchment - 2012

The Lake Macquarie City Council Section 7.12 Contributions Plan – Citywide 2019

(2) If the land is in a region within the meaning of the Act, Division 7.1, Subdivision 4, and the name of the Ministerial planning order in which the region is identified.

Yes,

The subject land is within The Lower Hunter Region to which the Environmental Planning and Assessment (Housing and Productivity Contribution) Order 2023 applies.

(3) If the land is in a special contributions area to which a continued 7.23 determination applies,

Nil

- (4) In this section continued 7.23 determination means a 7.23 determination that -
 - (a) has been continued in force by the Act, Schedule 4, Part 1, and
 - (b) has not been repealed as provided by that part.

NOTE: The Act, Schedule 4, Part 1 contains other definitions that affect the interpretation of this section.

4 Complying development

LMCC Page 6 of 19

The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) or (4), and 1.18 (1) (c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Housing Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Housing Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the Housing Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Low Rise Housing Diversity Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Low Rise Housing Diversity Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the Low Rise Housing Diversity Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Housing Alterations Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Housing Alterations Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

LMCC Page 7 of 19

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Commercial and Industrial Alterations Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Commercial and Industrial Alterations Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Commercial and Industrial (New Buildings and Additions) Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Commercial and Industrial (New Buildings and Additions) Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Subdivisions Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Subdivisions Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high

LMCC Page 8 of 19

aboriginal cultural significance.

Rural Housing Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Rural Housing Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the Rural Housing Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Greenfield Housing Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Greenfield Housing Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

Note: If the lot is only affected by the "heritage conservation area" exemption, then complying development under the Greenfield Housing Code **MAY** be carried out on the lot if the development is a detached outbuilding or swimming pool.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

General Development Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the General Development Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high

LMCC Page 9 of 19

aboriginal cultural significance.

Demolition Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Demolition Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Fire Safety Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Fire Safety Code **MAY NOT** be carried out on part of the land because the lot is partly affected by specific lot exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

Container Recycling Facilities Code

Note: If a lot is not specifically listed in this section then, complying development under this Code **MAY** be carried out on any part of that lot.

Lot 1 DP 778019

Complying development under the Container Recycling Facilities Code **MAY NOT** be carried out on part of the lot because the lot is partly affected by specific land exemptions.

The lot is affected by the following specific land exemptions:

The land is within an environmentally sensitive area being land within an area of high aboriginal cultural significance.

LMCC Page 10 of 19

5 Exempt development

The extent to which the land is land on which exempt development may be carried out under each of the codes for exempt development because of the provisions of clauses 1.16(1)(b1)–(d) or 1.16A of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Note: If a lot is not specifically listed in this section then, Exempt development under this Code **MAY** be carried out on the lot.

6 Affected building notices and building product rectification orders

(1) (a) Whether there is any affected building notice of which the council is aware that is in force in respect of the land.

No, Council **has not** been notified that an affected building notice is in force in respect of this land.

- (b) Whether there is any building product rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with.
 - A building rectification order **is not** in force in respect of this land.
- (c) Whether any notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding.

A notice of intention to make a building product rectification order **has not** been given in respect of this land.

(2) In this section -

Affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017

Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017

7 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in Section 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 3.15 of the Act.

No

LMCC Page 11 of 19

8 Road widening and road realignment

Whether the land is affected by any road widening or realignment under:

(a) Division 2 of Part 3 of the Roads Act 1993.

No

(b) any environmental planning instrument.

No

(c) any resolution of the Council.

No, other road widening proposals may affect this land and if so, will be noted on the Section 10.7 Subsection (5) certificate.

9 Flood related development controls information

- If the land or part of the land is within the flood planning area and subject to flood related development controls.
 Yes
- (2) If the land or part of the land is between the flood planning area and the probable maximum flood and subject to flood related development controls. Yes

NOTE:

Land in this area that is subject to flood related development controls relating to the PMF includes sensitive uses such as boarding houses, caravan parks, correctional centres, early education and care facilities, eco-tourist facilities, educational establishments, emergency services facilities, group homes, hazardous industries, hazardous storage establishments, hospitals, hostels, information and education facilities, police stations, respite day care centres, residential care facilities, seniors housing, sewerage systems, tourist and visitor accommodation and water supply systems.

(3) In this section -

flood planning area has the same meaning as in the Floodplain Development Manual.

Floodplain Development Manual means the Floodplain Development Manual (ISBN 0 7347 5476 0) published by the NSW Government in April 2005.

probable maximum flood has the same meaning as in the Floodplain Development Manual.

ADVICE: Further information on the development restriction mentioned, may be obtained from Council's *Property Flooding Information Summary* Flood Report Web Tool, which provides information about the flood hazard for a specified property (lot) in

LMCC Page 12 of 19

Lake Macquarie City. Flood Report Tool - Lake Macquarie City Council

10 Council and other public authority policies on hazard risk restrictions

- (1) Whether or not the land is affected by a **POLICY** that restricts the development of the land because of the likelihood of:
 - (a) land slip or subsidence

Yes

Relevant sections of Lake Macquarie Development Control Plan 2014 and Lake Macquarie Development Control Plan No.1 apply when development is proposed on land covered by Council's geotechnical areas map. The map is available for viewing at the Council. If you require any further clarification on the policy and how it may affect any possible development contact the Council on 02 4921 0333.

(b) bushfire

Yes

(c) tidal inundation

No

(d) acid sulfate soils

Yes

Relevant sections of Lake Macquarie Development Control Plan 2014 and Lake Macquarie Development Control Plan No.1 apply when development is proposed on land covered by the Acid Sulfate Soils Map. If you require any further clarification on the policy and how it may affect any possible development contact the Council on 02 4921 0333.

(e) contaminated or potentially contaminated land

Yes

Council has adopted a policy that may restrict the development of Contaminated or Potentially Contaminated land. This policy is implemented when zoning, development, or land use changes are proposed. Council does not hold sufficient information about previous use of the land to determine whether the land is contaminated. Consideration of Council's adopted Policy

LMCC Page 13 of 19

located in the applicable DCP noted in Clause 1(3) above, and the application of provisions under relevant State legislation is recommended.

(f) aircraft noise

No

(g) salinity

No

(h) any other risk (other than flooding).

No

(2) In this section —

adopted policy means a policy adopted —

- (a) by the council, or
- (b) by another public authority, if the public authority has notified the council that the policy will be included in a planning certificate issued by the council.

NOTE:

The absence of a council policy restricting development of the land by reason of a particular natural hazard does not mean that the risk from that hazard is non-existent.

11 Bush Fire Prone Land

Note: If a lot is not specifically listed in this section then, **NONE** of that lot is bush fire prone land.

Lot 1 DP 778019 - SOME of the land is bush fire prone land.

12 Loose-fill asbestos insulation

If the land includes any residential premises (within the meaning of Division 1A of Part 8 of the *Home Building Act 1989*) that are listed on the register that is required to be maintained under that Division

No. Council **has not** been notified that a residential premises erected on this land has been identified in the NSW Fair Trading Loose-Fill Asbestos Insulation Register as containing loose-fill asbestos ceiling insulation.

13 Mine subsidence

Whether the land is declared to be a mine subsidence district, within the meaning of the *Coal Mine Subsidence Compensation Act 2017*.

LMCC Page 14 of 19

The land IS NOT WITHIN a Mine Subsidence District declared under section 20 of the Coal Mine Subsidence Compensation Act 2017.

NOTE:

The advice in section 13 above relates only to a Mine Subsidence District. Further information relating to underground mining which may occur outside Mine Subsidence Districts should be sought. Underground mining information can be found on the Subsidence Advisory NSW website.

14 Paper subdivision information

 The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
 Nil

(2) The date of any subdivision order that applies to the land.

Not Applicable

(3) Words and expressions used in this section have the same meaning as in this Regulation, Part 10 and the Act, Schedule 7.

15 Property Vegetation Plans

The land IS NOT subject to a property vegetation plan approved under Part 4 of the Native Vegetation Act 2003 (and that continues in force).

16 Biodiversity stewardship sites

The land is not a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

17 Biodiversity Certified Land

This land is not biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

LMCC Page 15 of 19

Orders under Trees (Disputes Between Neighbours) Act 2006

Has an order been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

The land IS NOT subject to an order made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

Annual charges under *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works

Whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of *the Local Government Act* 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Nil

NOTE:

"Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

20 Conditions for seniors housing

If State Environmental Planning Policy (Housing) 2021, Chapter 3, Part 5 applies to the land, a statement setting out terms of a kind referred to in the Policy, clause 88(2) that have been imposed as a condition of development consent granted after 11 October 2007 in relation to the land.

Nil

21 Site compatibility certificates and conditions for affordable rental housing

(1) Whether there is a current site compatibility certificate, or a former site compatibility certificate, of which the council is aware, in relation to proposed development on the land.

Council is not aware of any site capability certificate for any proposed development on the land.

(2) If State Environmental Planning Policy (Housing) 2021, Chapter 2, Part 2, Division 1 or 5 applies to the land, any conditions of a development consent in relation to the land that are of a kind referred to in that Policy, section 21(1) or 40(1).

Nil

LMCC Page 16 of 19

(3) Any conditions of a development consent in relation to land that are of a kind referred to in *State Environmental Planning Policy (Affordable Rental Housing) 2009*, clause 17(1) or 38(1).

Council is not aware of any conditions of a development consent referred to in *State Environmental Planning Policy (Affordable Rental Housing) 2009*, clause 17(1) or 38(1).

(4) In this section—

former site compatibility certificate means a site compatibility certificate issued under State Environmental Planning Policy (Affordable Rental Housing) 2009.

NOTE:

The following matters are prescribed by section 59 (2) of the *Contaminated Land Management Act 1997* as additional matters to be specified in a planning certificate:

Matters arising under the Contaminated Land Management Act 1997 (s59 (2))

(a) The land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No

(b) The land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued.

No

(c) The land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No

(d) The land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued.

No

(e) The land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No

LMCC Page 17 of 19

ADVICE PROVIDED IN ACCORDANCE WITH SUBSECTION (5)

NOTE: SECTION 10.7(6) OF THE ACT STATES THAT A COUNCIL SHALL NOT INCUR ANY LIABILITY IN RESPECT OF ANY ADVICE PROVIDED IN

GOOD FAITH PURSUANT TO SUBSECTION (5).

22 Clearing and lopping of trees

The land is NOT affected by the requirements, under Lake Macquarie Local Environmental Plan 2014 and Lake Macquarie Local Environmental Plan 2004, for the clearing and lopping of trees.

23 Easements

The land is NOT affected by a proposed easement in favour of Lake Macquarie City Council.

As to affectation by existing easements, a search of the relevant Title of the land should be undertaken.

24 Outstanding Notice/Order

The land is NOT AFFECTED by an outstanding notice/order issued under any of the following Acts:

- Local Government Act, 1993
- Environmental Planning & Assessment Act, 1979
- Swimming Pools Act, 1992
- Biosecurity Act, 2015
- Protection of the Environment Operations Act, 1997

25 Earthquake

An earthquake was experienced throughout most of the city area on 28/12/89. Prospective purchasers should make their own enquiries as to whether buildings/structures on the land sustained any structural damage.

26 Lake Macquarie City Local Strategic Planning Statement (2019)

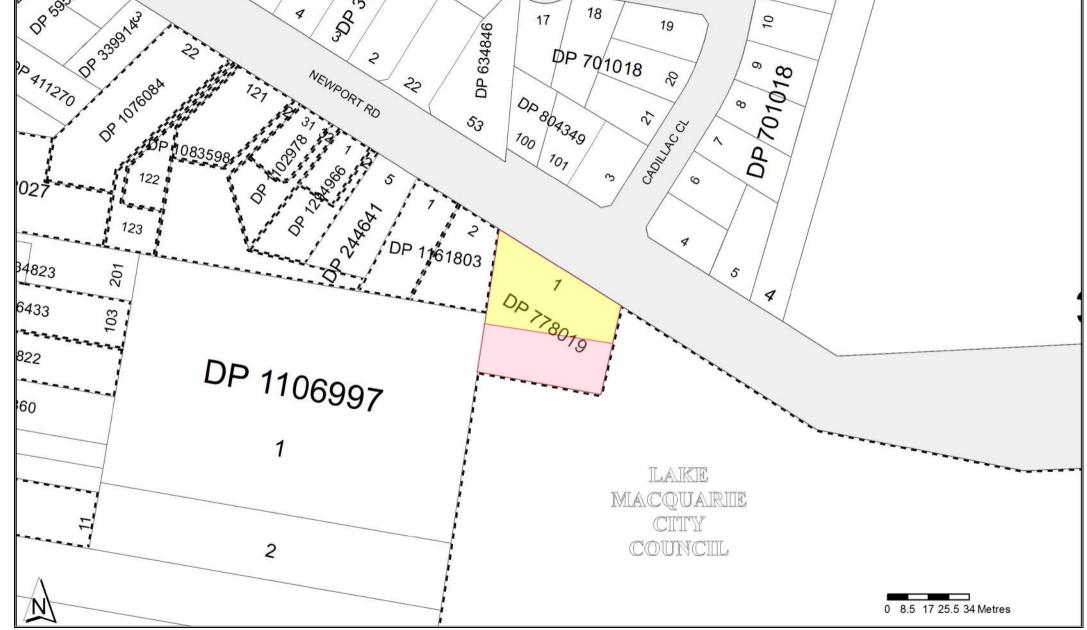
Council has prepared a strategy to provide direction for future land use planning in the City in collaboration with the community, the Lake Macquarie City Local Strategic Planning Statement 2019 (the LSPS). A copy of the LSPS is available from Council.

LMCC Page 18 of 19

27 Voluntary Planning Agreement

The land is not affected by a Voluntary Planning Agreement.

LMCC Page 19 of 19


Annex C

Cadastral Records Enquiry Report: Lot 1 DP 778019

Parish: COORUMBUNG

Locality: COORANBONG **LGA**: LAKE MACQUARIE **County: NORTHUMBERLAND**

Ref: 369 Newport Road

PLAN FORM 2

SISNATURE AND SEALS ONLY.

Pien Drawing only to appear in this space

*OFFICE USE ONLY

PLAN IN THE LAND TITLES OFFICE

10 | 20 | 30 | 40 | 50 | 60 | 70 Table of mm | 10, | 120 | 130 | 140 |

AMENDMENTS AND/OR ADDITIONS MADE ON

This negative is a photograph made as a permanent record of a document in the custody of the Registrar General this cay.

25th November, 1988

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

丟

DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

SYDNEY, N.S.W. Registrar General. UNNECESSARY ROAD OF (UNDER THE PUBLIC ROADS ACT. 1902)

> FRIEANOR the SECOND, by the Genee at God at the Multed Mingdom, Australia and her uther Rentme und Cercitories Queen, Bend of the Communitrentit, Defender of the Gnith: To All to foliam these Presents shall came. Greeting:-

مهموري المدار


HI I CLEUE RATHOND GEORGE ROUSE of Maitland Road Cooranbong in Our State of New South Wales ROUSE the Wife of the said Raymond George Rouse

(hereinafter called the GRANTEES) being the owners of land adjoining the land hereinafter described and intended to be hereby granted (famility a road which was duly closed in accordance with the provisions of the Public Roads Act, 1902) agreed to have such land granted to them upon payment of the sum of seventy three dollars being the value thereof agreed upon between Our Minister for Lands and the GRANTEES

AND WHEREAS the seld sum has been duly paid and all things required by law to be done

to entitle the GRANTEES to a Grant of the fee simple of the soid and Subject to the Reservations and Exceptions hereinafter contained have been done and performed NOW THESE PRESENTS WITNESS That in consideration of the premises WE DO HEREBY GRANT who the GRANTEES Subject to the Reservations and Exceptions hereinafter contained ALL THAT parcel of land containing by admeasurement two roads ten perches be the some more or less situated in the

County of Northumberland Ponsh of Coorumbung Being the closed road bounded by portions 87 and 42 and a South Western side of the road shown in plan catalogued No. 8.9248-1603 in the Department of Lands

As per Plan hereon TO HOLD unto the GRANTEES in fee simple as Joint tonanto
PROVIDED NEVERTHELESS AND WE DO HEREBY RESERVE AND EXCEPT unto Us Our Heirs and Successors all minerals which the said Land contains PROVIDED NEVER INC. SAID WE DU MERCET RESERVE AND EXCEPT UNIOUS DUT Meirs and Successors oil minerals which the said Land authority for Us Our Heirs and Successors and such persons as shall from time to summe be authorised by Us or Them to anteriup the said Land and to search for mine dig and remove the said minerals AND ALSO all such parts and so much of the said Land as may hereafter be required for public ways in over and through the same to be set out by Our Governor for the time being of Our said State or same person by him authorised, in that respect with full power for Us Our Heirs and Successors and for Our Governors a diversaid by such person or persons as shall be by Us Them or him authorised in that behalf to make and conduct all such public ways And the right of full and free ingress egress and regress into out of and upon the said Land for the several purposes aforesaid or any of them IN TESTIMONY WHEREOF We have caused this Our Grant to be Sealed with the Seal of Our said State.

> Our Governor of Our State of New South Wales and its Dependencies in the Commonwealth of Australia, at Sydney in Our said State, this twenty minth December eighteenth year in the of Our Reign and in the year of Our Lord one Thousand nine hundred and sixty nine

CHAINS

A. A. bestley

Governo

				· · ·	V. C. N. BUGH	T, GOVERNUEUR PAINTER
	SCHEDULE OF REGISTERED PROPRIETO	RS		· 		
REGISTERED PROPRIET	NATURE	INSTRUMENT NUMBER			Signature of Registrar General	
Ludwy Gordon Harpon Reconstant John Raftin	1 Martineti Schieler and 8					,
Bondontalian Holdings Bly limited all of Brooks	to as tenant in commen in og full sta	- transfer	10281554	9-4-1973	186 1973	Saviation
Poter Linds ay Gordon Harper of Crossdan	Medical Proctioner in & stace					
and 5 Bombard ex Holdings All mited in	distance as lengths incommo	n Iransmissio	R884384		x 1-6-1980	4
Peter birdsey Goods on Horper of Craydon Madigal Practition	and the contract of the contra		^ -			
acokrate Solicitor in a store and S. Bornor A or Holding	s Pty himited in ashore as tenants in common	Transmission	1584 3 811	<u> </u>	27-6-1980	6
Peler he day forders though of English Water But the						
	Holdings Ply historial to have to me	- 0	Sirmy		10.0	burn
Yvonne Borgas by Transfer 1479453. Regulered 23-3-19	17-				25 6 775Ts	
			4	e a Maria e	404 570	434

Prt:06-Nov-2023 10:42 /Seq:2 of 2

			SCHEDULE OF ENCUMBRANCES ETC.		<u></u>		
NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar-General	CANCELLATION	
Motgage.	/√ 167464		to Commonwealth Tracking Bank of Australia	5-4-1975	Janlatian	Discharged R667733	
							14.1
1.5				1 *			
7							
			14 778019				<u></u>
	·· ·····		FOLIO CANCELLED - NEW FOLIO IS 12 77 8019		<u> </u>		· .
						-	

		-					-
							·
							100
		La Constant					

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

6/11/2023 10:39AM

FOLIO: 1/778019

First Title(s): VOL 761 FOL 28 VOL 2312 FOL 180

Prior Title(s): VOL 2963 FOL 226 VOL 11219 FOL 94

Recorded	Number	Type of Instrument	C.T. Issue
25/10/1988	DP778019	DEPOSITED PLAN	FOLIO CREATED EDITION 1
5/7/2018	AN478770	TRANSFER	
5/7/2018	AN478771	MORTGAGE	EDITION 2
12/9/2022	AS466465	PRIORITY NOTICE	EDITION 3
16/9/2022	AS476689	DISCHARGE OF MORTGAGE	
16/9/2022	AS476690	TRANSFER	
16/9/2022	AS476691	MORTGAGE	EDITION 4
16/2/2023	AS862858	TRANSFER OF MORTGAGE	EDITION 5

*** END OF SEARCH ***

369 Newport Road

PRINTED ON 6/11/2023

System Document Identification

Form Number:01T-e Template Number: T_nsw16 ELN Document ID:6486740 ELN NOS ID: 6486742

TRANSFER

New South Wales Real Property Act 1900 **Land Registry Document Identification**

AN478770

Stamp Duty: 9386958-001

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any.

LODGED BY:

Responsible Subscriber: AUSTRALIAN GOVERNMENT SOLICITOR ABN 69405937639

Address: MLC Centre

L42, 19 Martin PL Sydney 2000

Telephone:

PEXA Subscriber Number: 2627
Customer Account Number: 500574H
Document Collection Box: 1W

Client Reference: Ash and Slade

LAND TITLE REFERENCE

1/778019

TRANSFEROR YVONNE BORGAS
TRANSFEREE
KANE JOHN WILLIAM ASH KRISTY LOUISE SLADE
Fenancy: Joint Tenants

CONSIDERATION

The transferor acknowledges receipt of the consideration of \$450,000.00

ESTATE TRANSFERRED

FEE SIMPLE

The Transferor transfers to the Transferee the Estate specified in this Instrument and acknowledges receipt of any Consideration shown.

SIGNING FOR TRANSFEROR

I certify that:

- 1. The Certifier has taken reasonable steps to ensure that this Registry Instrument or Document is correct and compliant with relevant legislation and any Prescribed Requirement.
- 2. The Certifier has retained the evidence supporting this Registry Instrument or Document.
- 3. The Certifier holds a properly completed Client Authorisation for the Conveyancing Transaction including this Registry Instrument or Document.
- **4.** The Certifier has taken reasonable steps to verify the identity of the transferor.

Party Represented by Subscriber:

YVONNE BORGAS

Signed By: Ivan Mark Kent

Signer Capacity: Practitioner Certifier

PEXA Signer Number: 3535

Digital Signing Certificate Number: 33630

Signed for Subscriber: IVAN MARK KENT ABN 55998027176

BRENNAN TIPPLE PARTNERS

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/778019 ____

> EDITION NO DATE SEARCH DATE TIME _____ ____ -----____ 16/2/2023 6/11/2023 10:39 AM 5

LAND

LOT 1 IN DEPOSITED PLAN 778019

AT COORANBONG

LOCAL GOVERNMENT AREA LAKE MACQUARIE PARISH OF COORUMBUNG COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP778019

FIRST SCHEDULE -----JC SUBDIVISION PTY LTD

(T AS476690)

SECOND SCHEDULE (2 NOTIFICATIONS)

- LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN - SEE CROWN GRANT(S)
- AS476691 MORTGAGE TO SF MORTGAGE PTY LTD (SEE AS862858)

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

369 Newport Road

PRINTED ON 6/11/2023

Annex D

Date: 06 Nov 2023 08:54:19 Reference: LS049804 EP

Address: 369 Newport Road, Cooranbong, NSW 2265

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Customer Service - Spatial Services	14/09/2023	14/09/2023	Quarterly	-	-	-	-
Topographic Data	NSW Department of Customer Service - Spatial Services	22/08/2022	22/08/2022	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	16/10/2023	10/10/2023	Monthly	1000m	0	0	1
Contaminated Land Records of Notice	Environment Protection Authority	06/10/2023	06/10/2023	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	16/10/2023	14/07/2021	Quarterly	1000m	0	0	0
Notices under the POEO Act 1997	Environment Protection Authority	26/07/2023	26/07/2023	Monthly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	26/05/2022	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia 2		07/09/2020	Annually	1000m	0	0	1
EPA PFAS Investigation Program	Environment Protection Authority	23/10/2023	23/09/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	19/10/2023	19/10/2023	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	19/10/2023	19/10/2023	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	19/10/2023	19/10/2023	Monthly	2000m	0	0	0
Defence Controlled Areas	Department of Defence	10/10/2023	10/10/2023	Quarterly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	19/10/2023	02/09/2022	Quarterly	2000m	0	0	0
National Unexploded Ordnance (UXO)	Department of Defence	10/10/2023	10/10/2023	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	16/02/2022	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	0	1	4
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	0	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	2	2
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	7
Points of Interest	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	0	0	5
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/10/2022	19/10/2022	Quarterly	1000m	0	0	4
Major Easements	NSW Department of Customer Service - Spatial Services	19/10/2023	19/10/2023	Quarterly	1000m	0	1	5
State Forest	Forestry Corporation of NSW	16/08/2022	14/08/2022	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	16/02/2023	31/12/2022	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	29/08/2022	19/08/2019	As required	1000m	1	1	2

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	09/05/2023	23/02/2018	Annually	1000m	0	0	0
National Groundwater Information System (NGIS) Boreholes	Bureau of Meteorology; Water NSW	18/04/2023	13/07/2022	Annually	2000m	0	0	4
NSW Seamless Geology Single Layer: Rock Units	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	2	2	6
NSW Seamless Geology – Single Layer: Trendlines	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
NSW Seamless Geology – Single Layer: Geological Boundaries and Faults	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	2
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	18/08/2022	27/07/2020	Annually	1000m	1	2	2
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	10/10/2023	01/09/2023	Monthly	500m	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	2	2	3
Dryland Salinity - National Assessment	ent National Land and Water Resources 18/ Audit		12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	16/10/2023	16/10/2023	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	1	1	2
Mining Title Applications	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	10	10	11
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	31/08/2023		Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	10/10/2023	15/09/2023	Monthly	1000m	1	4	26
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	20/10/2023	13/04/2022	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	20/10/2023	13/04/2022	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	06/09/2023	03/03/2023	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	10/10/2023	22/09/2023	Monthly	1000m	0	0	3
Bush Fire Prone Land	NSW Rural Fire Service	28/09/2023	15/08/2023	Monthly	1000m	1	3	4
NSW Native Vegetation Type Map	NSW Department of Planning and Environment	26/05/2023	12/12/2022	Quarterly	1000m	1	2	8
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	09/05/2023	01/11/2022	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	3
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	8
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	27/10/2023	27/10/2023	Weekly	10000m	-	-	-

Site Diagram

Internal Parcel

Boundaries

369 Newport Road, Cooranbong, NSW 2265

Date: 06 November 2023

Data Source Aerial Imagery: © Aerometrex Pty Ltd

Coordinate System: GDA 1994 MGA Zone 56

369 Newport Road, Cooranbong, NSW 2265

369 Newport Road, Cooranbong, NSW 2265

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
13550	Avondale Auto Centre	679 Freemans DRIVE	COORANBON G	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	238m	North West

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

369 Newport Road, Cooranbong, NSW 2265

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

369 Newport Road, Cooranbong, NSW 2265

EPA Notices

Penalty Notices, s.91 & s.92 Clean up Notices and s.96 Prevention Notices within the dataset buffer:

Number	Туре	Name	Address	Status	Issued Date	Act	Offence	Offence Date	Loc Conf	Dist	Dir
N/A	No records in buffer										

NSW EPA Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

369 Newport Road, Cooranbong, NSW 2265

Waste Management & Liquid Fuel Facilities

369 Newport Road, Cooranbong, NSW 2265

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
5427	INDEPEND ENT	AVONDALE AUTO CENTRE	677 FREEMANS DRIVE	COORANBO NG	PETROL STATION	OPERATION AL			Premise Match	238m	North West

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

369 Newport Road, Cooranbong, NSW 2265

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites and Unexploded Ordnance

369 Newport Road, Cooranbong, NSW 2265

Defence Controlled Areas (DCA)

Defence Controlled Areas provided by the Department of Defence within the dataset buffer:

Site ID	Location Name	Loc Conf	Dist	Dir
N/A	No records in buffer			

Defence Controlled Areas, Data Custodian: Department of Defence, Australian Government

Defence 3 Year Regional Contamination Investigation Program (RCIP)

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

National Unexploded Ordnance (UXO)

Sites which have been assessed by the Department of Defence for the potential presence of unexploded ordnance within the dataset buffer:

Site ID	Location Name	Category	Area Description	Additional Information	Commonwealth	Loc Conf	Dist	Dir
N/A	No records in buffer							

National Unexploded Ordnance (UXO), Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

369 Newport Road, Cooranbong, NSW 2265

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

369 Newport Road, Cooranbong, NSW 2265

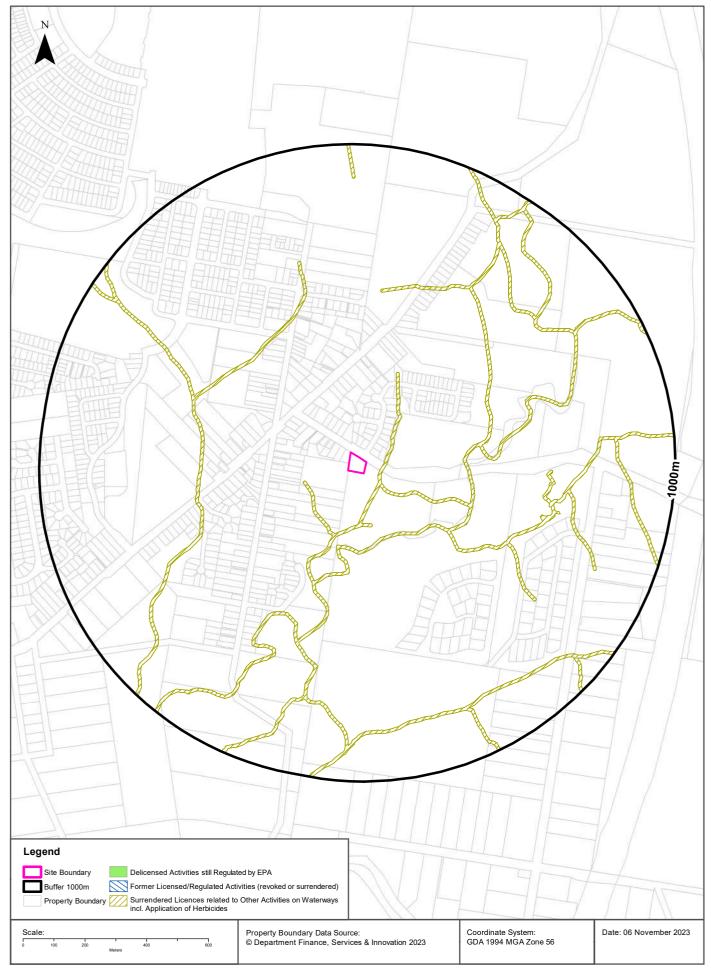
EPA Activities

369 Newport Road, Cooranbong, NSW 2265

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
6332	LAKE MACQUARIE CITY COUNCIL	-	-	SPEERS POINT	Other activities	Network of Features	46m	South East
20987	RAY JOHNSONS SCRAP TYRE DISPOSALS PTY LTD		2/23 Currans Road, COORANBONG, NSW 2265		Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste	Premise Match	764m	East
20987	RAY JOHNSONS SCRAP TYRE DISPOSALS PTY LTD		2/23 Currans Road, COORANBONG, NSW 2265		Waste storage - other types of waste; Waste storage - waste tyres	Premise Match	764m	East
20987	RAY JOHNSONS SCRAP TYRE DISPOSALS PTY LTD		2/23 Currans Road, COORANBONG, NSW 2265		Waste storage - waste tyres	Premise Match	764m	East


POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

369 Newport Road, Cooranbong, NSW 2265

EPA Activities

369 Newport Road, Cooranbong, NSW 2265

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	46m	South East
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	46m	South East
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	46m	South East

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

369 Newport Road, Cooranbong, NSW 2265

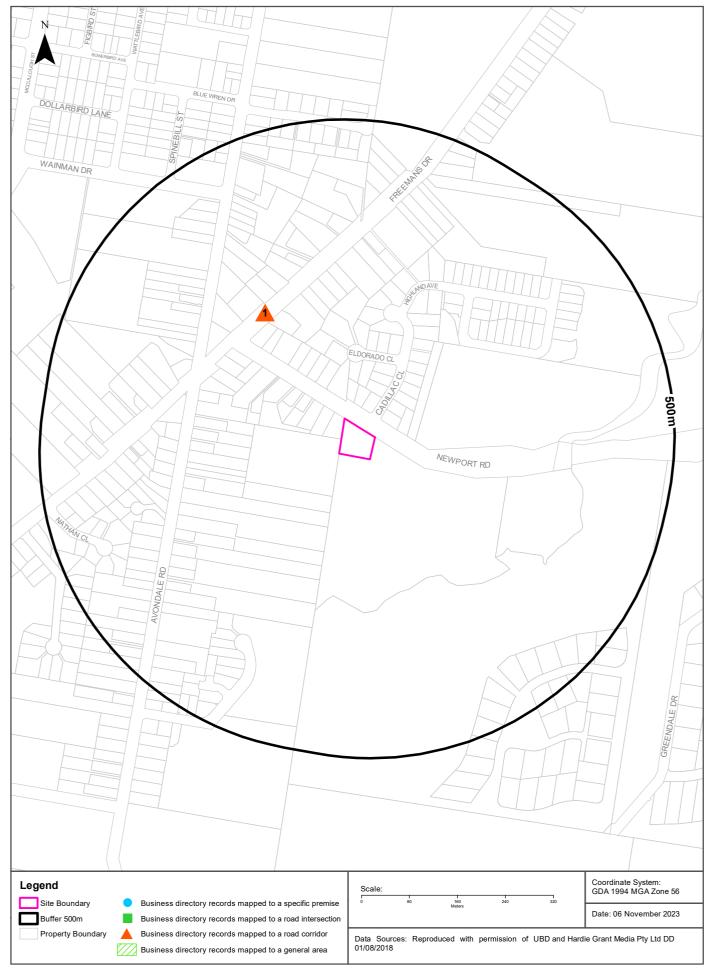
Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	NOT LISTED	Eager, T. W. L., Herblst., 47 Avondale Rd., Cooranbong 2265	166322	1982	Premise Match	100m	South West
	HERBALISTS	Eager, T. W. L., 47 Avondale Rd., Cooranbong 2265	636816	1970	Premise Match	100m	South West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches


Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

369 Newport Road, Cooranbong, NSW 2265

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	MOTOR GARAGES & ENGINEERS	Strong's Garage, 108 Maitland Rd., Cooranbong 2265	636829	1970	Road Match	204m
	MOTOR GARAGES & ENGINEERS	Strong's Garage, Maitland Rd., Cooranbong	148633	1961	Road Match	204m
	MOTOR GARAGES & ENGINEERS	Weinman, F. A., 18 Maitland Rd., Cooranbong	148634	1961	Road Match	204m
	DRY CLEANERS, PRESSERS & DYERS	Avon (The), 66 Maitland Rd. Cooranbong	168229	1950	Road Match	204m
	MOTOR GARAGES & ENGINEERS	Cooranbong Garage, 14 Maitland Rd. Cooranbong	168260	1950	Road Match	204m
	MOTOR GARAGES & ENGINEERS	Strong's Garage, Maitland Rd. Cooranbong	168261	1950	Road Match	204m
	MOTOR GARAGES & ENGINEERS	Wainman, F. A., 18 Maitland Rd. Cooranbong	168262	1950	Road Match	204m

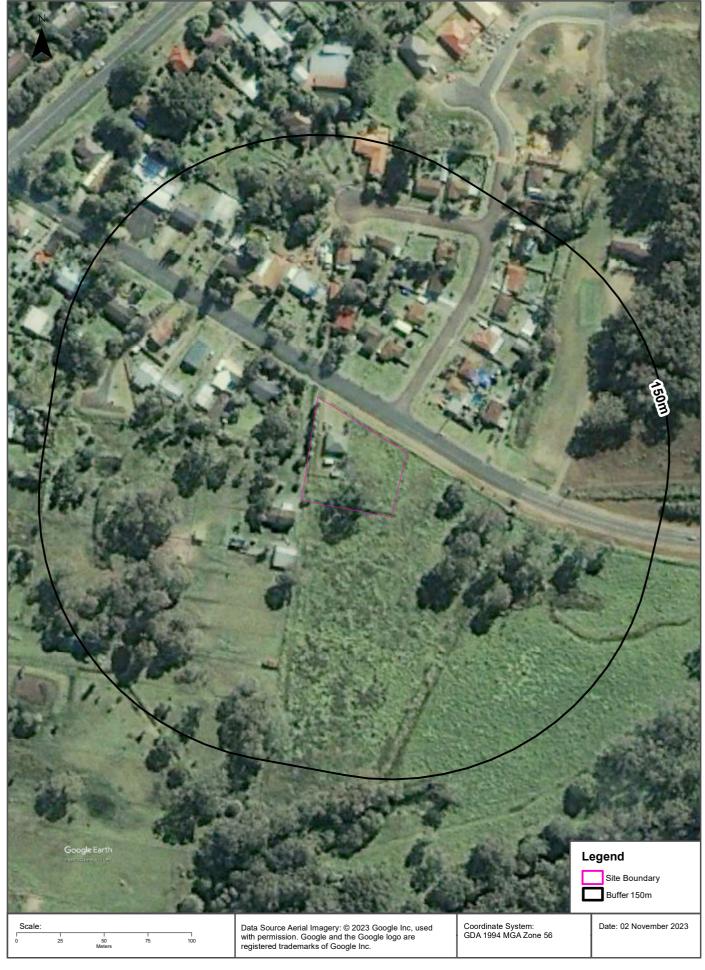
Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Aerial Imagery 2023 369 Newport Road, Cooranbong, NSW 2265

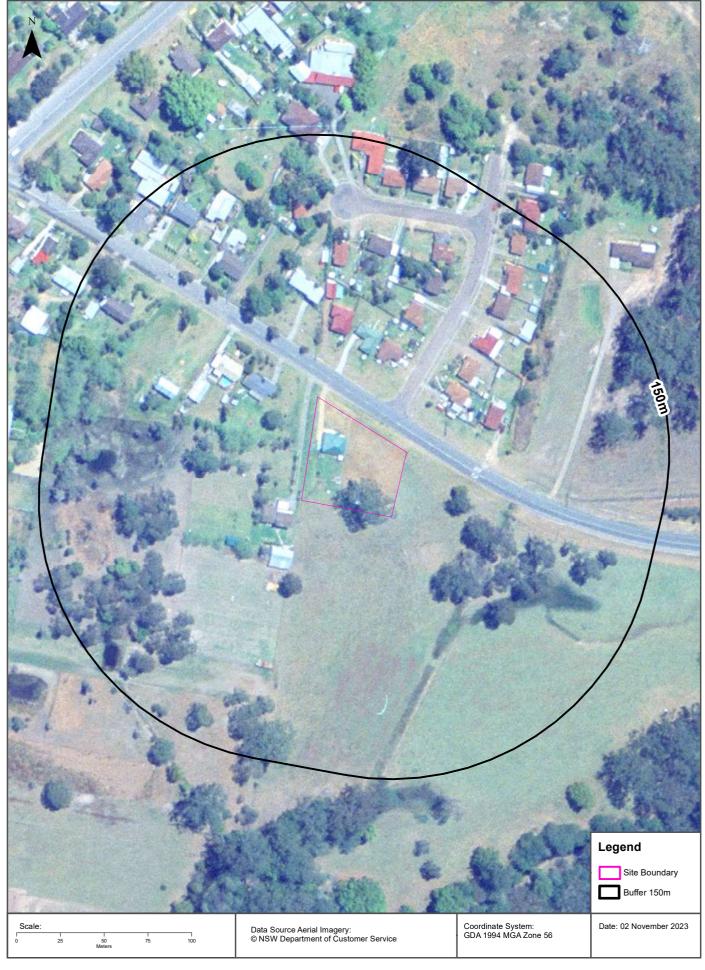
Aerial Imagery 2019
369 Newport Road, Cooranbong, NSW 2265

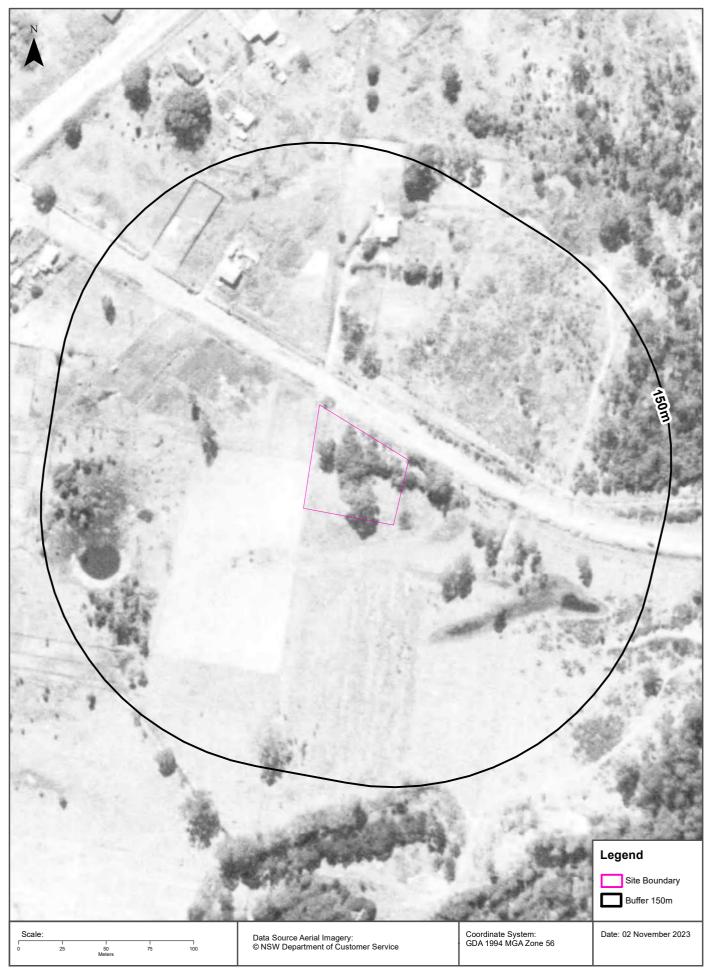
Aerial Imagery 2016 369 Newport Road, Cooranbong, NSW 2265

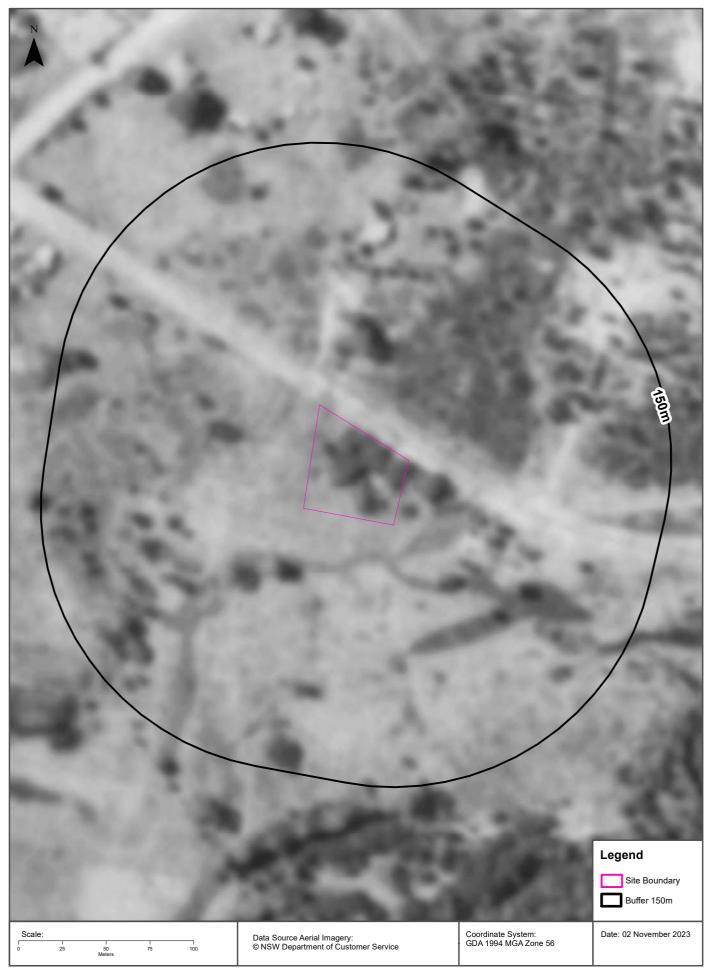
Aerial Imagery 2010 369 Newport Road, Cooranbong, NSW 2265

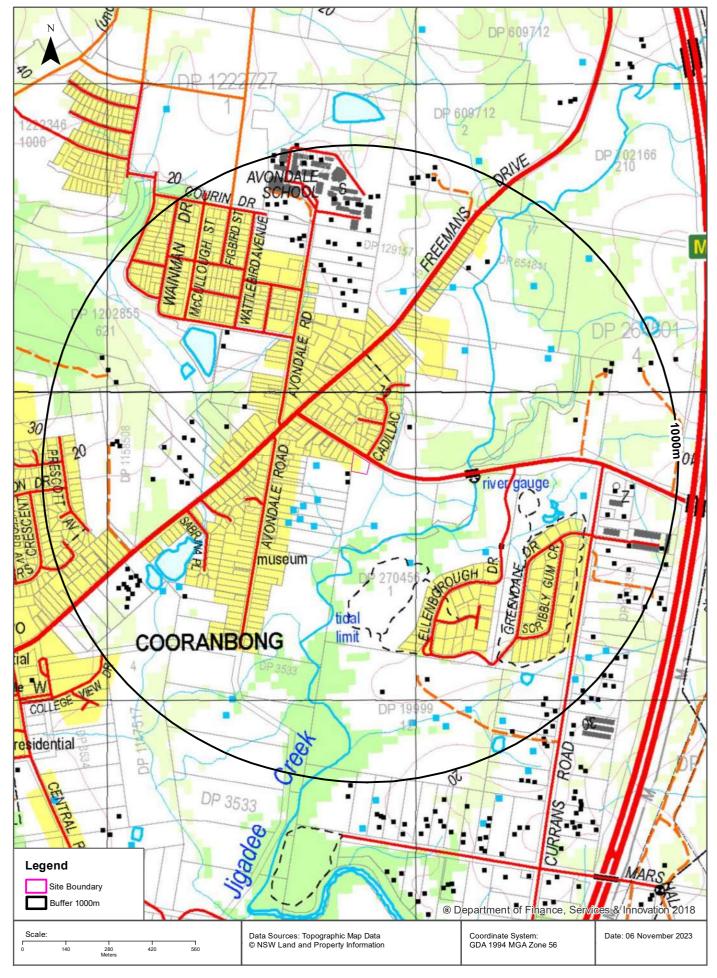


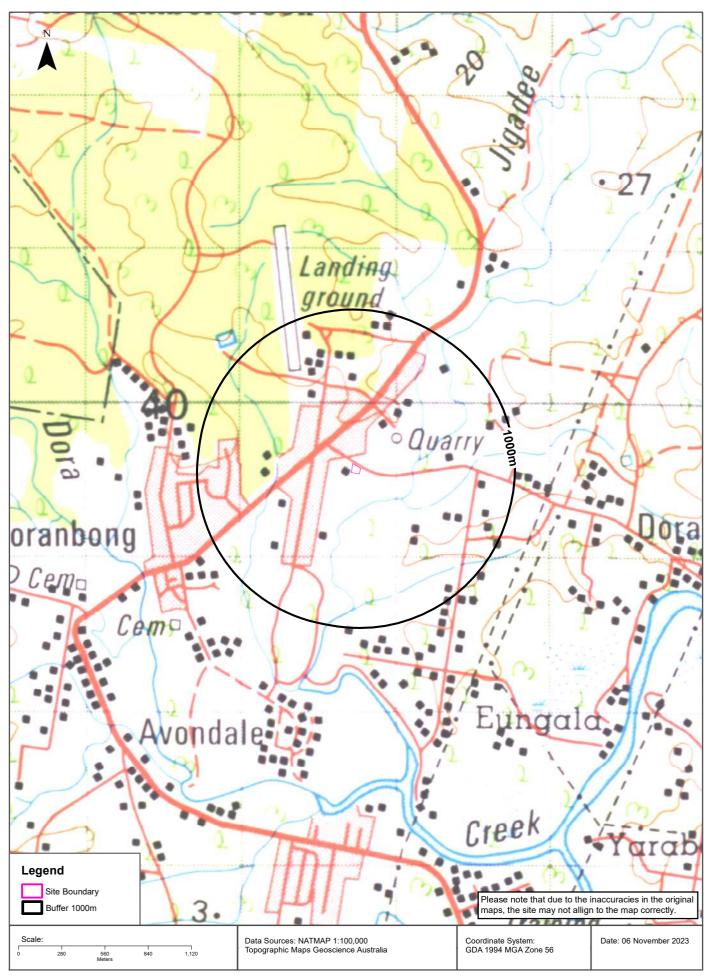
Aerial Imagery 2007 369 Newport Road, Cooranbong, NSW 2265

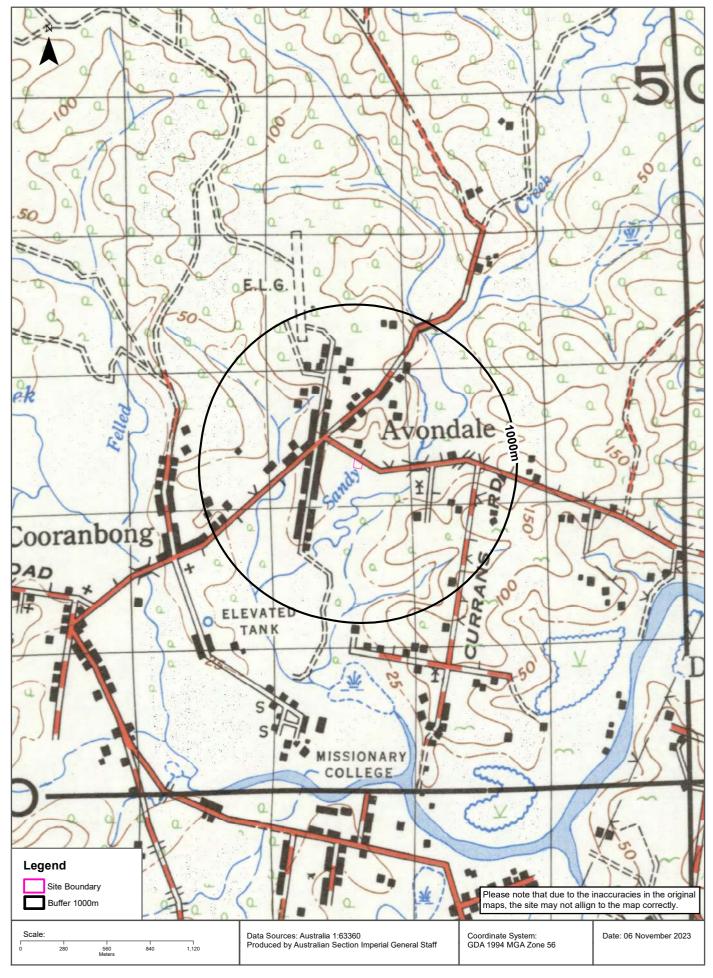


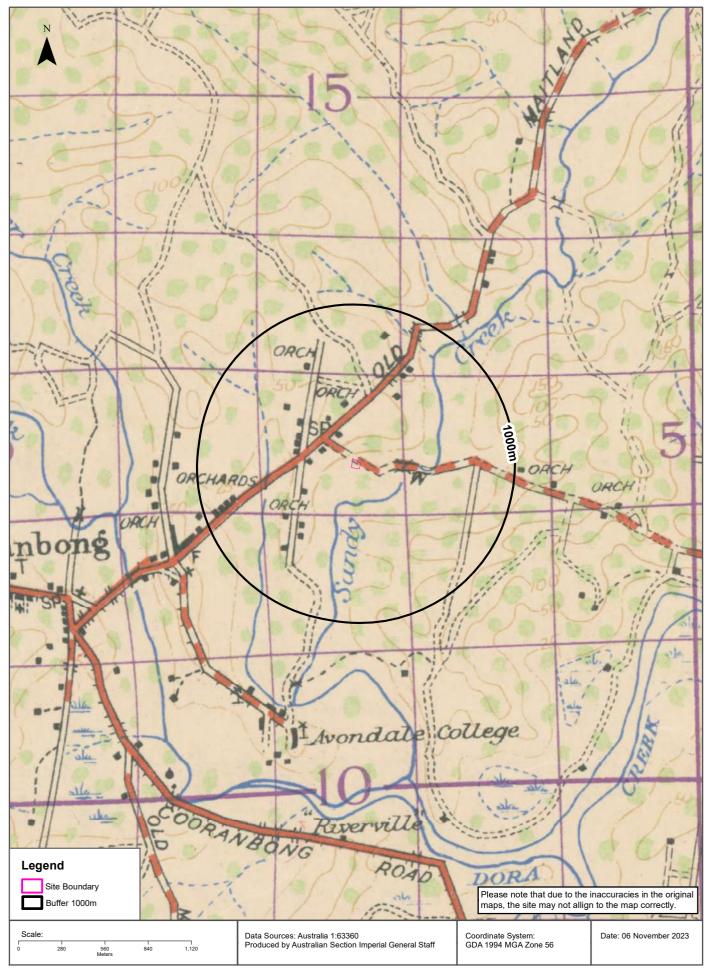


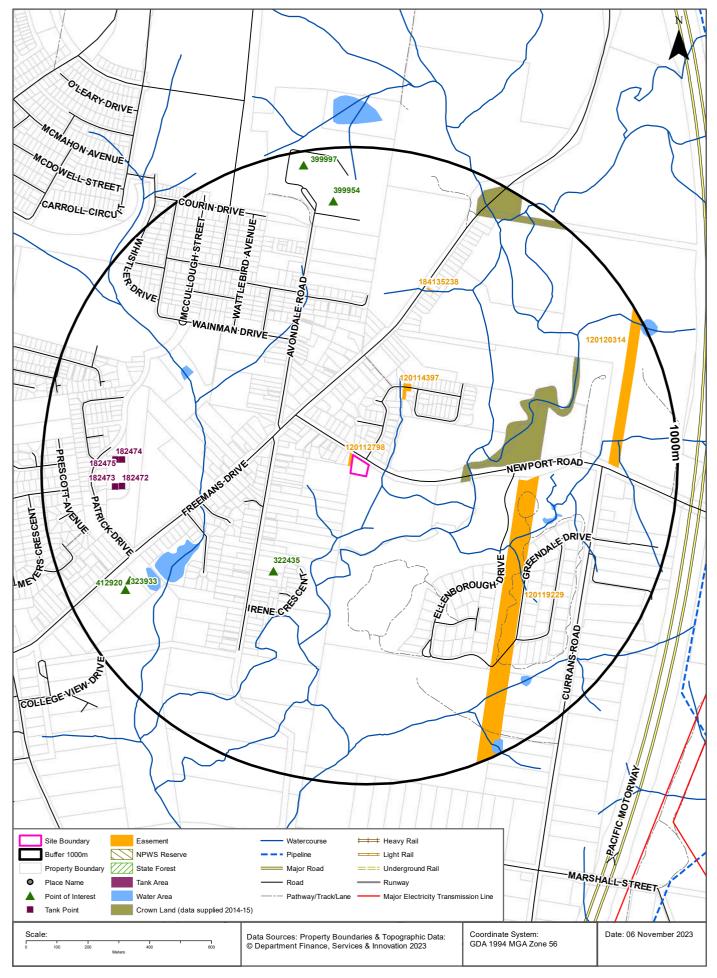





Topographic Map 2015


Historical Map 1975


Historical Map c.1959



Historical Map c.1926

369 Newport Road, Cooranbong, NSW 2265

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
322435	Museum	SUNNYSIDE MUSEUM	403m	South West
412920	Child Care Centre	COORANBONG VALLEY COMMUNITY PRESCHOOL	793m	South West
323933	Community Facility	COORANBONG COMMUNITY SERVICES CENTRE	820m	South West
399954	Primary School	AVONDALE SCHOOL	828m	North
399997	High School	AVONDALE SCHOOL	955m	North

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

369 Newport Road, Cooranbong, NSW 2265

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
182472	Water	Operational		14/07/2018	740m	West
182475	Water	Operational		14/07/2018	741m	West
182473	Water	Operational		14/07/2018	762m	West
182474	Water	Operational		14/07/2018	762m	West

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120112798	Primary	Undefined		0m	North West
120114397	Primary	Undefined		240m	North East
120119229	Primary	Undefined		489m	South East
184135238	Primary	Right of way	1.5m	587m	North
120120314	Primary	Undefined		778m	East

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

369 Newport Road, Cooranbong, NSW 2265

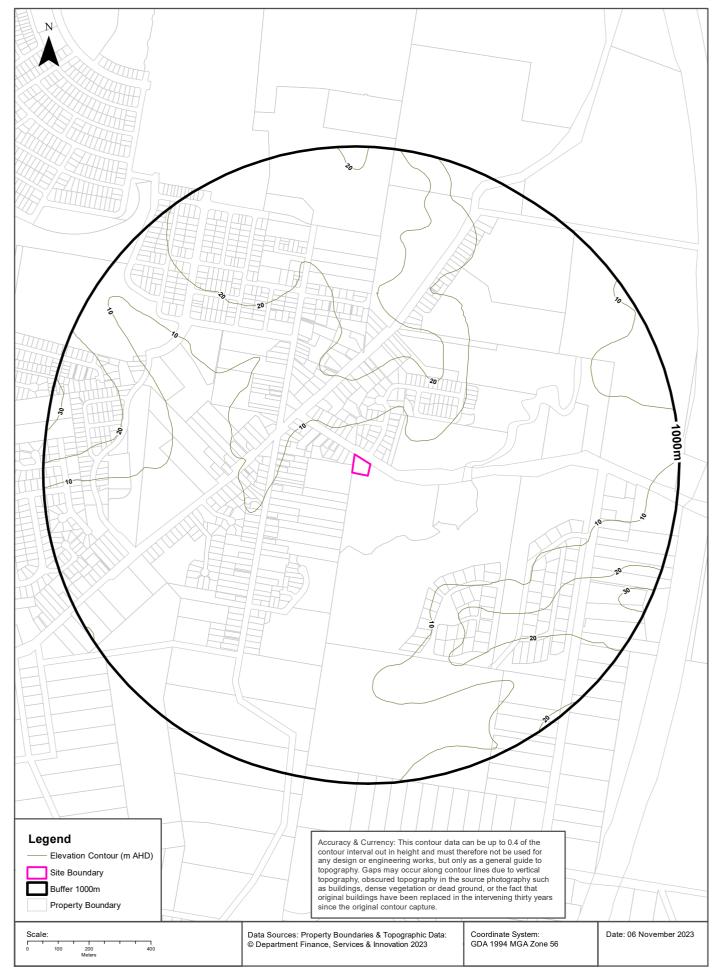
State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

369 Newport Road, Cooranbong, NSW 2265

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Porous, extensive aquifers of low to moderate productivity	0m	On-site
Fractured or fissured, extensive aquifers of low to moderate productivity	718m	North

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

369 Newport Road, Cooranbong, NSW 2265

Groundwater Boreholes

Boreholes within the dataset buffer:

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10095621	GW064116	Water Supply	Unknown	01/03/1987	21.30		AHD	0-500 ppm			311m	West
10130877	GW200765	Water Supply	Unknown	12/10/1980	8.00		AHD		6.000	6.00	399m	West
10012200	GW064033	Water Supply	Unknown	01/03/1987	49.40		AHD	501-1000 ppm			1034m	South East
10098084	GW067263	Water Supply	Functioning	20/03/1989	10.00	3.00	AHD		0.150	3.00	1811m	South West

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

369 Newport Road, Cooranbong, NSW 2265


Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

NGIS Bore ID	Drillers Log	Distance	Direction
10095621	0.00m-1.80m Clay 1.80m-11.50m Conglomerate 11.50m-15.30m Sandstone Weathered Water Supply 15.30m-17.60m Conglomerate 17.60m-18.30m Sandstone Water Supply 18.30m-21.30m Conglomerate	311m	West
10012200	0.00m-2.00m Soil Sandy 2.00m-6.00m Conglomerate 6.00m-10.60m Conglomerate Hard 10.60m-19.80m Sandstone Water Supply 19.80m-45.70m Conglomerate Some 45.70m-50.20m Sandstone Water Supply 50.20m-54.80m Shale	1034m	South East

Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

369 Newport Road, Cooranbong, NSW 2265

Geological Units

What are the Geological Units within the dataset buffer?

Unit Code	Unit Name	Description	Unit Stratigraphy	Age	Dominant Lithology	Distance
Q_af	Alluvial floodplain deposits	Silt, very fine- to medium- grained lithic to quartz-rich sand, clay.	/Alluvium//Alluvial floodplain deposits//	Quaternary (base) to Now (top)	Clastic sediment	0m
Tncm	Munmorah Conglomerate	Medium- to coarse-grained lithic to quartz-lithic sandstone, granule to pebble polymictic conglomerate; minor siltstone and white claystone, thin lenticular coal seams.	/Narrabeen Group/Clifton Subgroup/Munmorah Conglomerate//	Lopingian (base) to Early Triassic (top)	Sandstone	Om
QH_af	Alluvial floodplain deposits	Silt, very fine- to medium- grained lithic to quartz-rich sand, clay.	/Alluvium//Alluvial floodplain deposits//	Holocene (base) to Now (top)	Clastic sediment	162m
Q_av	Alluvial valley deposits	Silt, clay, (fluvially deposited) lithic to quartz-lithic sand, gravel.	/Alluvium//Alluvial valley deposits//	Quaternary (base) to Now (top)	Clastic sediment	435m
Q_at	Alluvial terrace deposits	Silt, clay, (fluvially- deposited) fine- to medium- grained quartz-lithic sand, polymictic gravel.	/Alluvium//Alluvial terrace deposits//	Quaternary (base) to Now (top)	Clastic sediment	499m
Q_avf	Alluvial fan deposits	Fluvially-deposited quartz- lithic sand, silt, gravel, clay.	/Alluvium//Alluvial valley deposits/Alluvial fan deposits/	Quaternary (base) to Now (top)	Clastic sediment	794m

Linear Geological Structures

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

Map ID	Feature Description	Map Sheet Name	Distance
No Features			

What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

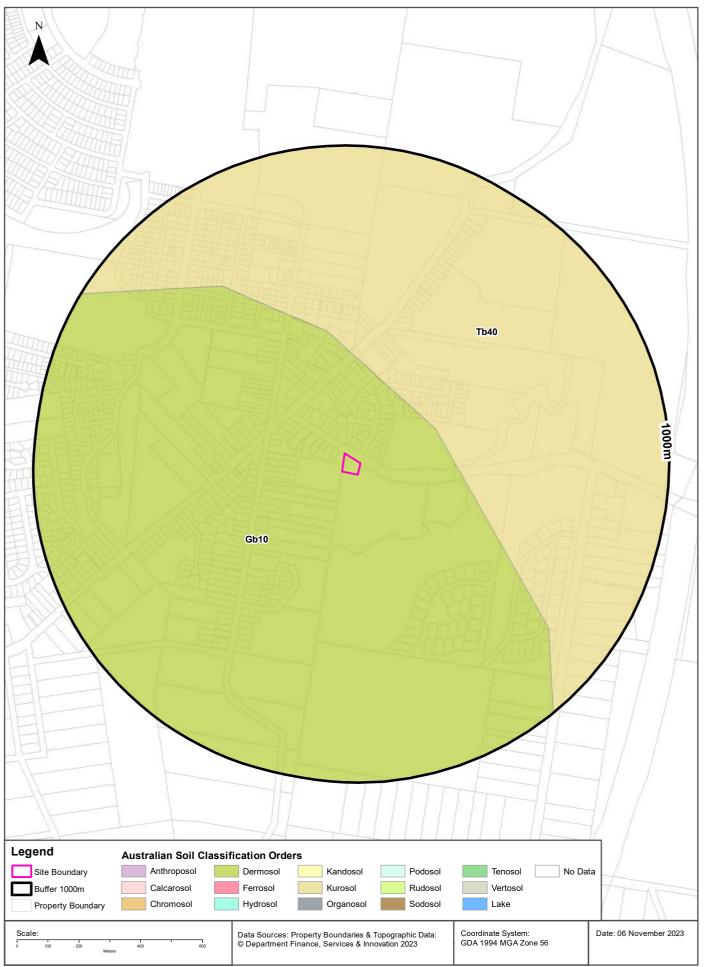
Map ID	Boundary Type	Description	Map Sheet Name	Distance
No Features				

Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Naturally Occurring Asbestos Potential

369 Newport Road, Cooranbong, NSW 2265

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Atlas of Australian Soils

Soils

369 Newport Road, Cooranbong, NSW 2265

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Gb10	Dermosol	River terraces, levees, flood-plains, coastal swamps, and tidal flats: this unit contains the same land forms and soils as unit Gb9, but in addition has (i) swamps and levees of the lower river flood-plain of (Uf6.6), (Ug5), and other undescribed soils; (ii) estuarine flats of peaty or organic soils over acid clays; and (iii) tidal mud flats. The soils of these areas are not well known but probably have similarities with the soils of units J3, Mc4, NY1, and NN1. The smaller areas mapped as unit Gb10 consist mainly of areas of (i) and/or (iii) above.	0m	On-site
Tb40	Kurosol	Undulating to hilly areas with some steep slopes and cliffs, rock outcrops, and narrow terraced valleys: chief soils are hard acidic yellow mottled soils (Dy3.41) with some shallow soils such as (Um4.1) and (Uc4.1) on the steeper slopes. Associated are: (Gn2.2) soils and (Dd1) soils, both of which occur on slopes; undescribed soils in the valleys; and some (Dy5) and (Uc1.2) soils along the coast. As mapped, small areas of units Gb10 and Cb28 are included.	245m	North East

Atlas of Australian Soils Data Source: CSIRO

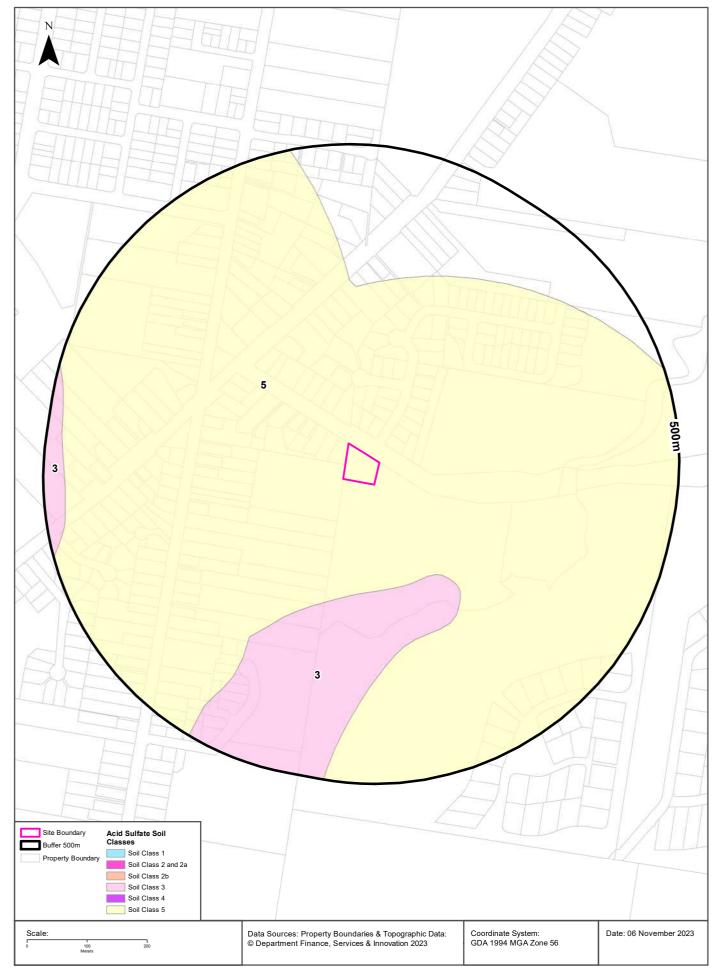
Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes of Central and Eastern NSW

Soils

369 Newport Road, Cooranbong, NSW 2265

Soil Landscapes of Central and Eastern NSW


Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>9131wy</u>	Wyong	0m	On-site
<u>9131do</u>	Doyalson	30m	North West

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

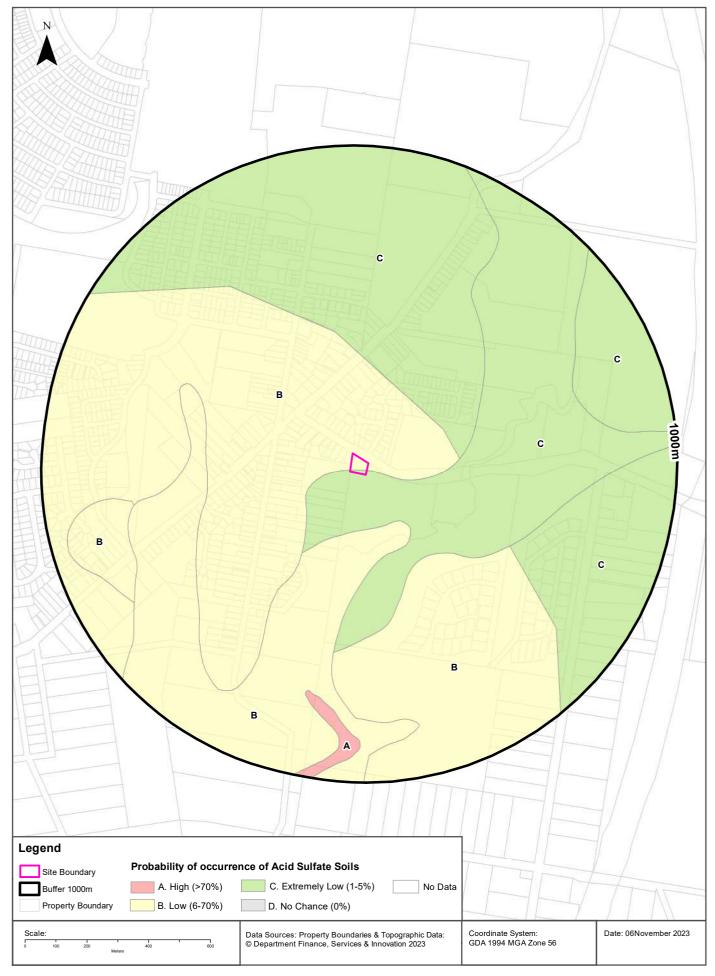
Acid Sulfate Soils

369 Newport Road, Cooranbong, NSW 2265

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
5	Works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk	Lake Macquarie Local Environmental Plan 2014


If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
3	Works more than 1 metre below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 1 metre below natural ground surface, present an environmental risk	Lake Macquarie Local Environmental Plan 2014	176m	South

NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

369 Newport Road, Cooranbong, NSW 2265

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m	On-site
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m	On-site
Α	High Probability of occurrence. >70% chance of occurrence.	723m	South

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

369 Newport Road, Cooranbong, NSW 2265

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source: National Land and Water Resources Audit

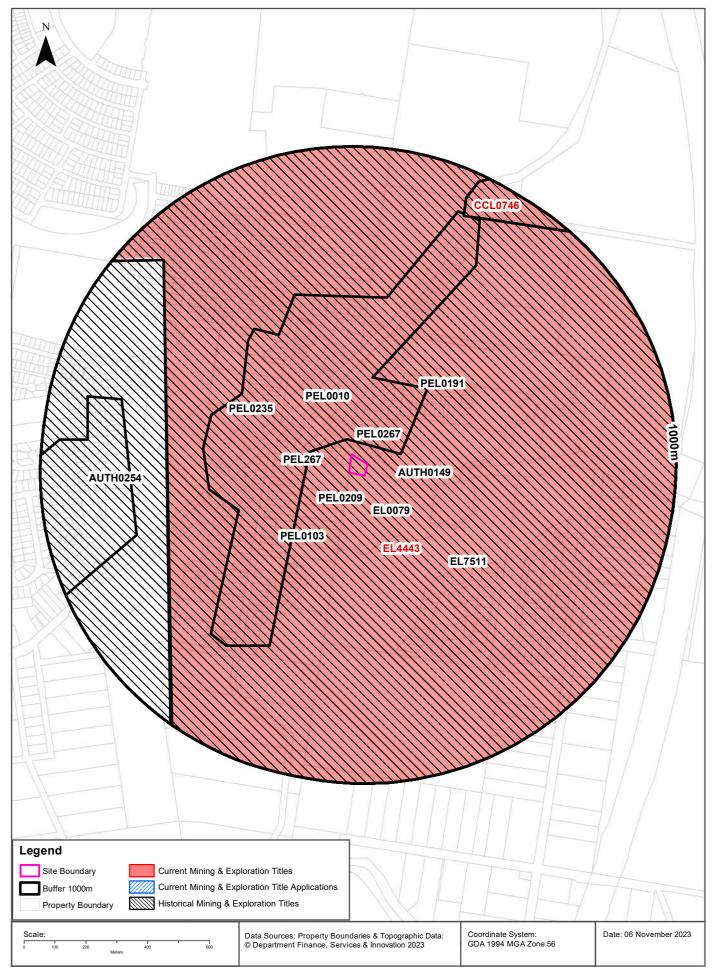
The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

369 Newport Road, Cooranbong, NSW 2265

Mining Subsidence Districts


Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

369 Newport Road, Cooranbong, NSW 2265

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
EL4443	CENTENNIAL MANDALONG PTY LIMITED	23/10/1992	23/10/2025	20230825	EXPLORING	COAL	Group 9	0m	On-site
CCL074 6	CENTENNIAL NEWSTAN PTY LIMITED	16/05/1990	31/12/2028	20100805	MINING	COAL	Coal, Petroleum	855m	North East

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

369 Newport Road, Cooranbong, NSW 2265

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

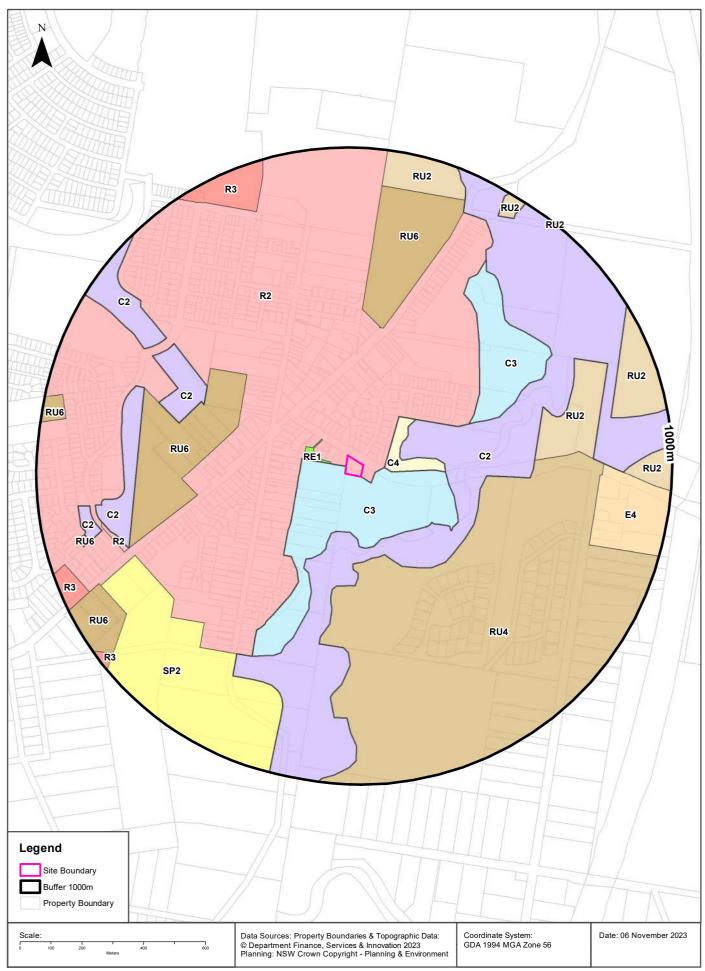
Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0267	SYDNEY OIL CO (NSW) PTY LTD, MANVANE PTY LTD AUSTRALIA NL, BASE RESOURCES LTD, SEAHAWK OIL AUSTRALIA NL, READING & BATES	19850801	20150607	PETROLEUM	Petroleum	0m	On-site
AUTH0149	THE ELECTRICITY COMMISSION OF NSW (TRADING AS PACIFIC POWER)	19790203	19920214	COAL	Coal	0m	On-site
PEL267	AGL UPSTREAM INVESTMENTS PTY LIMITED	19930413	19991205	MINERALS		0m	On-site
PEL0235	EASTMET LTD	19810504		PETROLEUM	Petroleum	0m	On-site
PEL0010	AUSTRALIAN OIL AND GAS CORPORATION LTD, UNION OIL DEVELOPMENT CORP., KERN COUNTY LAND CO.			PETROLEUM	Petroleum	0m	On-site
PEL0103	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
EL7511	CENTENNIAL FASSIFERN PTY LTD	20100407	20130407	MINERALS	Geothermal	0m	On-site
PEL0191	NORTHWEST OIL AND MINERALS CO NL			PETROLEUM	Petroleum	0m	On-site
PEL0209	EARTH RESOURCES AUSTRALIA PTY LTD			PETROLEUM	Petroleum	0m	On-site
EL0079	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	19670201	19680201	MINERALS		0m	On-site
AUTH0254	NSW DEPARTMENT OF MINERAL RESOURCES	19810115	19850115	COAL	Coal	588m	West

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

369 Newport Road, Cooranbong, NSW 2265

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones 369 Newport Road, Cooranbong, NSW 2265

Environmental Planning Instrument

369 Newport Road, Cooranbong, NSW 2265

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	0m	On-site
C3	Environmental Management		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	0m	South
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	52m	West
C4	Environmental Living		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	67m	East
C2	Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	120m	East
RU4	Primary Production Small Lots		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	264m	South East
C3	Environmental Management		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	365m	North East
RU6	Transition		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	369m	West
RU6	Transition		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	427m	North
C2	Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	495m	North West
RU2	Rural Landscape		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	554m	East
SP2	Infrastructure	Educational Establishment	Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	666m	South West
C2	Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	675m	West
C2	Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	701m	North West
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	743m	West
E4	General Industrial		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	762m	East
C2	Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	809m	West
RU2	Rural Landscape		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	815m	East
RU6	Transition		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	843m	South West
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	845m	North West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RU6	Transition		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	854m	West
RU2	Rural Landscape		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	881m	North
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	914m	South West
RU2	Rural Landscape		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	916m	North East
RU6	Transition		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	922m	West
RU2	Rural Landscape		Lake Macquarie Local Environmental Plan 2014	28/04/2023	28/04/2023	01/09/2023	Map Amendment No 8	996m	North East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

369 Newport Road, Cooranbong, NSW 2265

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
63	House "Sunnyside"	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	346m	South West
73	Cottage	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	360m	West
72	House "Three Bells"	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	25/11/2022	920m	South West

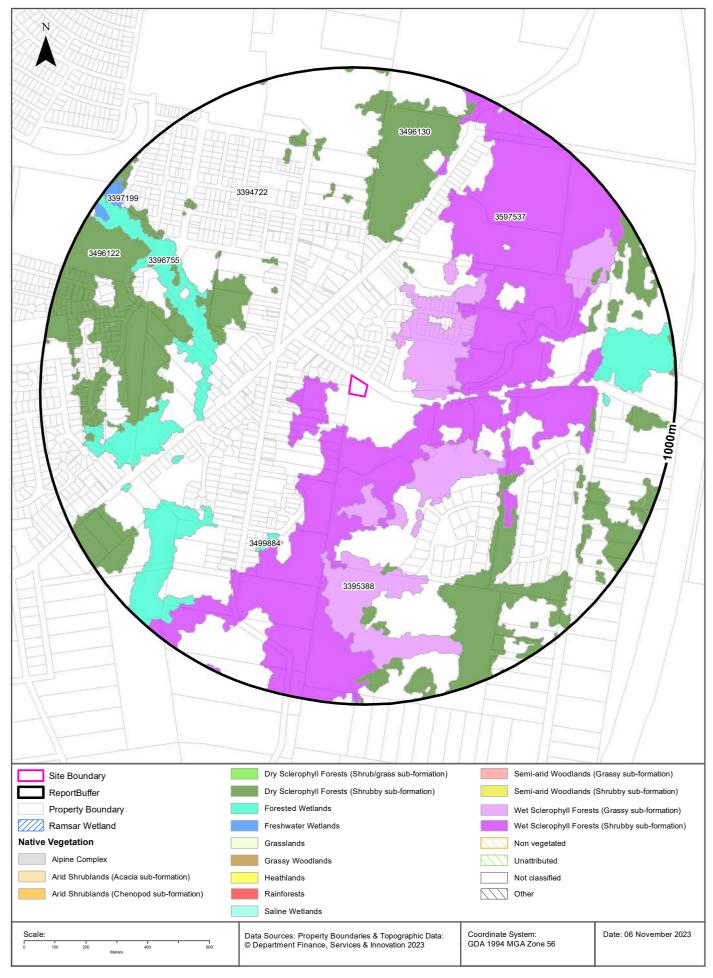
Heritage Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

369 Newport Road, Cooranbong, NSW 2265

Bush Fire Prone Land


What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	0m	On-site
Vegetation Category 3	88m	East
Vegetation Category 1	99m	North East
Vegetation Category 2	264m	North East

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

369 Newport Road, Cooranbong, NSW 2265

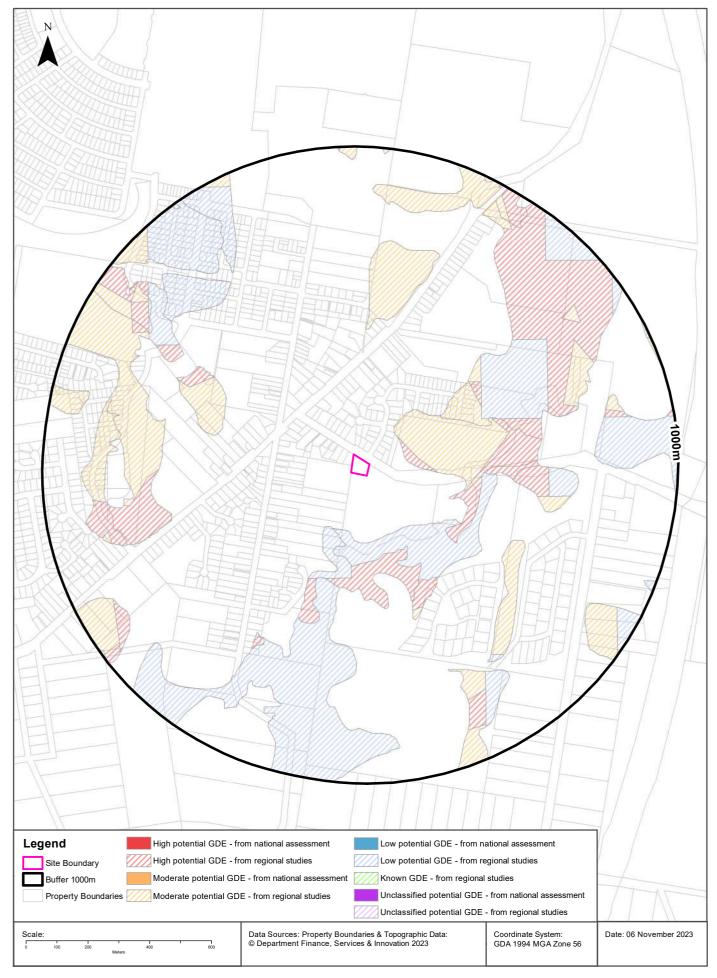
Native Vegetation

What native vegetation exists within the dataset buffer?

Map ID	Vegetation Formation	Plant Community Type and Vegetation Formation	Vegetation Class	Dist	Dir
3394722	Not classified	(Not classified) Not classified	Not classified	0m	On-site
3597537	Wet Sclerophyll Forests (Shrubby subformation)	(Wet Sclerophyll Forests (Shrubby sub-formation)) Northern Lowland Viney Wet Forest	North Coast Wet Sclerophyll Forests	35m	East
3395388	Wet Sclerophyll Forests (Grassy sub-formation)	(Wet Sclerophyll Forests (Grassy sub-formation)) Lower North Ranges Turpentine Moist Forest	Northern Hinterland Wet Sclerophyll Forests	117m	South East
3496130	Dry Sclerophyll Forests (Shrubby subformation)	(Dry Sclerophyll Forests (Shrubby sub-formation)) Hunter Coast Lowland Scribbly Gum Forest	Sydney Coastal Dry Sclerophyll Forests	361m	North East
3396755	Forested Wetlands	(Forested Wetlands) Coastal Creekflat Layered Grass- Sedge Swamp Forest	Coastal Floodplain Wetlands	442m	West
3499884	Forested Wetlands	(Forested Wetlands) Northern Creekflat Eucalypt- Paperbark Mesic Swamp Forest	Coastal Floodplain Wetlands	509m	South West
3496122	Dry Sclerophyll Forests (Shrubby subformation)	(Dry Sclerophyll Forests (Shrubby sub-formation)) Hunter Coast Lowland Apple-Bloodwood Forest	Sydney Coastal Dry Sclerophyll Forests	741m	West
3397199	Freshwater Wetlands	(Freshwater Wetlands) Coastal Floodplain Phragmites Reedland	Coastal Freshwater Lagoons	923m	North West

Native Vegetation Type Map: NSW Department of Planning and Environment 2022 Creative Commons Attributions 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

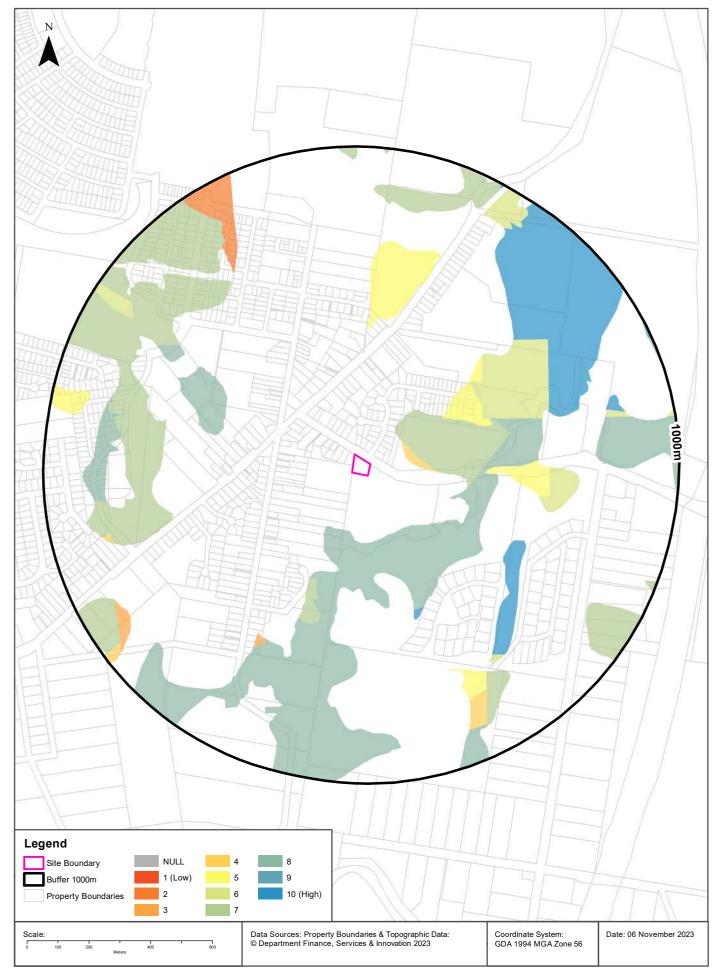
Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

369 Newport Road, Cooranbong, NSW 2265


Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	High potential GDE - from regional studies	Deeply dissected sandstone plateaus.	Vegetation		115m	East
Terrestrial	Moderate potential GDE - from regional studies	Deeply dissected sandstone plateaus.	Vegetation		127m	East
Terrestrial	Low potential GDE - from regional studies	Deeply dissected sandstone plateaus.	Vegetation		187m	South East

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

369 Newport Road, Cooranbong, NSW 2265

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	4	Deeply dissected sandstone plateaus.	Vegetation		115m	East
Terrestrial	7	Deeply dissected sandstone plateaus.	Vegetation		127m	East
Terrestrial	8	Deeply dissected sandstone plateaus.	Vegetation		187m	South
Terrestrial	5	Deeply dissected sandstone plateaus.	Vegetation		276m	North East
Terrestrial	6	Deeply dissected sandstone plateaus.	Vegetation		391m	North East
Terrestrial	10	Deeply dissected sandstone plateaus.	Vegetation		461m	South
Terrestrial	3	Deeply dissected sandstone plateaus.	Vegetation		601m	South West
Terrestrial	2	Deeply dissected sandstone plateaus.	Vegetation		708m	North West

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

369 Newport Road, Cooranbong, NSW 2265

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Litoria brevipalmata	Green-thighed Frog	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Mixophyes balbus	Stuttering Frog	Endangered	Category 2	Vulnerable	
Animalia	Amphibia	Mixophyes iteratus	Giant Barred Frog	Endangered	Category 2	Endangered	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Category 2	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Endangered	
Animalia	Aves	Calyptorhynchus lathami lathami	South-eastern Glossy Black- Cockatoo	Vulnerable	Category 2	Vulnerable	
Animalia	Aves	Charadrius veredus	Oriental Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Cuculus optatus	Oriental Cuckoo	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	, <u>.</u>
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion anaethetus	Bridled Tern	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus magnificus	Wompoo Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pycnoptilus floccosus	Pilotbird	Not Listed	Not Sensitive	Vulnerable	
Animalia	Aves	Rhipidura fuliginosa	New Zealand Fantail (Lord Howe Is. subsp.)	Extinct	Not Sensitive	Extinct	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Turnix maculosus	Red-backed Button-quail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Notamacropus parma	Parma Wallaby	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Nyctophilus bifax	Eastern Long- eared Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Southern Greater Glider	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Petaurus australis		Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petrogale penicillata	Brush-tailed Rock-wallaby	Endangered	Not Sensitive	Vulnerable	
Animalia	Mammalia	Phascogale tapoatafa	Brush-tailed Phascogale	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Phoniscus papuensis	Golden-tipped Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Potorous tridactylus	Long-nosed Potoroo	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys gracilicaudatus	Eastern Chestnut Mouse	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Pseudomys	New Holland	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	novaehollandiae Pteropus	Mouse Grey-headed	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	poliocephalus Saccolaimus	Flying-fox Yellow-bellied	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	flaviventris Scoteanax	Sheathtail-bat Greater Broad-	Vulnerable	Not Sensitive	Not Listed	
		rueppellii	nosed Bat				

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Hoplocephalus stephensii	Stephens' Banded Snake	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Angophora inopina	Charmhaven Apple	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Asperula asthenes	Trailing Woodruff	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Caesia parviflora var. minor	Small Pale Grass- lily	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Corunastylis sp. Charmhaven (NSW896673)		Critically Endangered	Category 2	Critically Endangered	
Plantae	Flora	Corybas dowlingii	Red Helmet Orchid	Endangered	Category 2	Not Listed	
Plantae	Flora	Cryptostylis hunteriana	Leafless Tongue Orchid	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus parramattensis subsp. parramattensis		Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Genoplesium insigne	Variable Midge Orchid	Critically Endangered	Category 2	Critically Endangered	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Isotoma fluviatilis subsp. fluviatilis		Not Listed	Category 3	Extinct	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Maundia triglochinoides		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Persicaria elatior	Tall Knotweed	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Rutidosis heterogama	Heath Wrinklewort	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Annex E

Hunter Civilab

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH2

 UTM
 :
 Drill Rig
 : Trailer Mounted Drill Rig
 Job Number
 : E0137

 Easting (m)
 : 0.0
 Driller Supplier
 : Hunter Civilab
 Client
 : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation: Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

	Elevation: Not Surveyed			wed By : JD : 07/11/2023		ad, Cooranbong NSW	
Total Dep	oth : 1.8 m BGL Samples		Date	: 07/11/2023	Loc Comment :		Remarks
Water	S	Depth (m)	Graphic Log	Material Description	Moisture	Soil Origin	
		0.2		FILL: Silty GRAVEL, angular, medium sized, loose, pale brown.	D	Fill	
		- - _ <u>0.5</u>		FILL: Silty CLAY, low plasticity, soft, orange brown, with fine siz	ed gravel. w < PL	: Fill	
		-		FILL: Silty CLAY, low plasticity, soft, green orange brown, with f	ine sized gravel. w≈ PL	Fill	
		1		Silty CLAY, low plasticity, dark brown grey, trace coal fragments	w<	Residual	
		<u> </u>		Silty CLAY, low plasticity, grey pale brown.	w≈ PL	Residual	
				BH2 Terminated at 1.8	Зт		
		- 2					
		— 3 - -					
		_					

Hunter Civilab

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH3

UTM : Drill Rig : Trailer Mounted Drill Rig : Do Number : E0137
Easting (m) : 0.0 : Driller Supplier : Hunter Civilab : Client : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation: Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

	Elevation : Not Surveyed		Reviev			rt Roa	d, Cooranbong NSW	
Total De			Date	: 07/11/2023	Loc Comment :			
Water	Samples Su	Depth (m)	Graphic Log	Material Description		Moisture	Soil Origin	Remarks
		<u>0.2</u> -		FILL: Silty GRAVEL, angular, medium sized, loose, brown. FILL: Silty CLAY, low plasticity, soft, orange pale brown, with fine	⊋ sized gravel.	D w < PL	Fill Fill	
		<u>0.5</u>		FILL: Silty CLAY, low plasticity, soft, brown, with fine sized grave	4.		Fill	
		_ 1		FILL: Silty to gravelly CLAY, fine sized gravel, low plasticity, firm red.	orange brown black pale		Fill	
		- <u>1.3</u>		Silty CLAY, low plasticity, red orange pale grey.			Residual	
		-						
		-2		DII2 Townsingstod at 20				
		- - - -		BH3 Terminated at 2r	1			

Hunter Civilab

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH4

UTM : Drill Rig : Trailer Mounted Drill Rig : Do Number : E0137
Easting (m) : 0.0 : Driller Supplier : Hunter Civilab : Client : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation : Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

1	Elevation : Not Surveyed			red By : JD Location		oad, Cooranbong NSW	
Total Dep			Date	: 07/11/2023 Loc Comm	nent :		
	Samples						Remarks
Water	R	Depth (m)	Graphic Log	Material Description	Moisture	Soil Origin	
		0.2		FILL: Silty GRAVEL, angular, medium sized, loose, pale brown.	D	Fill	
		0.2 - 0.5		FILL: Silty CLAY, low plasticity, soft, orange brown, with fine to medium sized gravel	el. w <	Fill	
		-		Silty CLAY, low plasticity, dark brown, trace fine sized gravel.		Residual	
		— 1 — 1		Silty CLAY, low plasticity, grey.	w a	Residual	
				BH4 Terminated at 1.5m			

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole BH5

Number : E0137

 UTM
 :
 Drill Rig
 : Trailer Mounted Drill Rig
 Job Number
 : E0137

 Easting (m)
 : 0.0
 Driller Supplier
 : Hunter Civilab
 Client
 : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation: Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

1	Elevation : Not Surveyed			ved By : JD Location		ad, Cooranbong NSW	
Total De			Date	: 07/11/2023 Loc Comm	ent:		
	Samples						Remarks
Water	ES	Depth (m)	Graphic Log	Material Description	Moisture	Soil Origin	
		0.2		FILL: Silty GRAVEL, angular, fine to medium sized, loose, pale brown, with low plast	ticity clay. D	Fill	
		11		FILL: Silty to gravelly CLAY, fine to medium sized gravel, low plasticity, soft, pale bro orange.	wn pale w≈	Fill	
		-		Silty CLAY, low plasticity, brown orange pale grey.	w < PL	Alluvial	
				BH5 Terminated at 1.5m			

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH6

 UTM
 :
 Drill Rig
 : Trailer Mounted Drill Rig
 Job Number
 : E0137

 Easting (m)
 : 0.0
 Driller Supplier
 : Hunter Civilab
 Client
 : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation : Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

	Elevation : Not Surveyed					touu	, Cooranbong NSW	
Total De			Date	: 07/11/2023 Loc Comment :	:			
	Samples							Remarks
Water	R	Depth (m)	Graphic Log	Material Description	Moietre	Molsure	Soil Origin	
		0.2		FILL: Silty to gravelly CLAY, fine to medium sized gravel, low plasticity, soft, orange pale brown.	grey w	< 'L	Fill	
		<u>0.2</u> -		FILL: Silty to gravelly CLAY, fine to medium sized gravel, low plasticity, soft, orange brown pale grey.	n w P	> L	Fill	
		-		Silty CLAY, low plasticity, grey.	w P	≈ L	Residual	
				BH6 Terminated at 1.6m				

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH7

UTM : Drill Rig : Trailer Mounted Drill Rig : Do Number : E0137
Easting (m) : 0.0 : Driller Supplier : Hunter Civilab : Client : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation : Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

	Elevation : Not Surveyed			ved By : JD		nt Roa	d, Cooranbong NSW	
Total Dep			Date	: 07/11/2023	Loc Comment :			
1	Samples		[]	Remarks
Water	ES	Depth (m)	Graphic Log	Material Desc	ription	Moisture	Soil Origin	
		0.2		FILL: Silty GRAVEL, angular, fine to medium sized, lo	ose, brown.	D	Fill	
		<u>0.2</u> -		FILL: Silty to gravelly CLAY, fine to medium sized grav	el, low plasticity, soft, orange brown.	w < PL	Fill	
		<u>0.4</u> -	$\times \times \times \times \times \times \times$	FILL: Silty CLAY, low plasticity, firm to stiff, pale grey of	ark brown, with fine sized gravel.	w≈ PL	Fill	
		—1 -1		Sith CLAV law slasticity gray			Alluvial	
				Silty CLAY, low plasticity, grey.		w≈ LL	Alluviai	
				BH7 Terminate	d at 1.2m			
		- - - -						
		-						

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH8

UTM : Drill Rig : Trailer Mounted Drill Rig : Do Number : E0137
Easting (m) : 0.0 : Driller Supplier : Hunter Civilab : Client : Cash

Northing (m) : 0.0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation: Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

	Elevation : Not Surveyed				vport Roa	d, Cooranbong NSW	
Total De			Date	: 07/11/2023 Loc Comment :			-
Water	Samples Samples	Depth (m)	Graphic Log	Material Description	Moisture	Soil Origin	Remarks
		0.2		FILL: Sandy to gravelly SILT, fine sized gravel, fine grained sand, low plasticity, soft, yellow brown, with low plasticity clay.	w < PL	Fill	
		- - 0.6		FILL: Sandy to gravelly SILT, fine sized gravel, fine grained sand, non-plastic, very soft, brown.		Fill	
		- 1		FILL: Silty to gravelly CLAY, fine to medium sized gravel, low plasticity, soft to firm, pale red orange brown.	w≈ PL	Fill	
		1.3		Silty CLAY, low plasticity, dark brown.	w≈ LL	Alluvial	
				BH8 Terminated at 1.5m			

Unit 3, 62 Sandringham Avenue Thornton NSW 2322

Phone: (02) 4966 1844

Geotechnical Log - Borehole

BH1

UTM : Drill Rig : Trailer Mounted Drill Rig : Do Number : E0137
Easting (m) : 0 : Driller Supplier : Hunter Civilab : Client : Cash

Northing (m) : 0 Logged By : FH Project : Limited Detailed Site Investigation

Ground Elevation: Not Surveyed Reviewed By : JD Location : 369 Newport Road, Cooranbong NSW

Total Depth	evation : Not Surveyed		Reviev Date	ved By : JD : 09/11/2023	Location Loc Commen		rt Roa	d, Cooranbong NSW	
Total Depth	Samples		Date	. 03/11/2023		n			Remarks
Water	S	Depth (m)	Graphic Log	Material Description			Moisture	Soil Origin	
		0.2		FILL: Silty GRAVEL, angular, medium sized, loose, pale brown.			D	Fill	
		- 0.4		FILL: Silty GRAVEL, angular, fine to medium sized, medium dense, de low plasticity clay.	ark brown black,	trace	М	Fill	
		-		FILL: Silty CLAY, low plasticity, soft, dark brown, with fine sized grave			w≈ PL	Fill	
		_1 <u>_1</u>							
				Silty CLAY, low plasticity, pale grey orange.				Residual	
		_							
				BH1 Terminated at 1.5m					

Annex F

					Me	tals							TRH NEP	M (2013)			1	ВТ	EX				P/	ΔH		
	TER AL CONSULTING	My/ka My/senic	Cadmium gg/kg	mg/kg	Copper	pea- mg/kg	Nickel mg/kg	ouiZ mg/kg	%% Mercury	্ৰ শু TRH C6-C10 Fraction	্ত্ৰ সুস্ক TRH C6-C10 minus BTEX (F1)	3 	স্ত্র সুত্ সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্র সুত্ সুত্ স সুত্ স সুত্ সুত্ স সুত্ স সুত্ স সুত্ স সু সুত্ স সু স স স স স স স স স স স স স স স স স	ਕੂੜੇ ਨੂੰ ਸਿਸ >C16-C34 (F3)	ਕੂਲੇ ਨੂੰ ਸਿਸ >C34-C40 (F4)	Napthalene	Benzene 8//88	교 왕 제 Toluene	공 쪽 조	ଅ ଅଧି ମଧ୍ୟ Total Xylenes	ವ ಸ್ಥ Maphthalene	ਤ ਲ ਲੋ ਲੋ ਲੋ	ত্ত্ৰ ক্ৰ Carcinogenic PAHs, BaP TEQ <lor=0 ক</lor=0 	چ حداد Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>ত্ত্ৰ জ ক কি</th><th>a Ay Total PAH</th></lor=lor<>	ত্ত্ৰ জ ক কি	a Ay Total PAH
Limit of Reporting		1	0.3	0.5	0.5	1	0.5	2	0.05	25	25	25	25	90	120	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.2	0.3	0.2	0.8
HIL A (NEPM 2013)		100	20	100	6000	300	400	7400	40	23	23	23	23	30	120	0.1	0.1	0.1	0.1	0.5	0.1	0.1	3	3	3	300
HSL A - Soil Vapour Sand 0 - <1m (N	NEPM 2013)	100	20	100	0000	300	400	7400	40		45		110			3	0.5	160	55	40			3	3	3	300
HSL A - Soil Vapour Sand 1 - <2m (N											70		240			NL	0.5	220	NL	60						
HSL A - Soil Vapour Silt 0 - <1m (NE											40		230			4	0.6	390	NL	95						
HSL A - Soil Vapour Silt 1 - <2m (NE											65		NL			NL	0.7	NL	NL	210						
HSL A - Soil Vapour Clay 0 - <1m (NI	,										50		280			5	0.7	480	NL	110						
HSL A - Soil Vapour Clay 1 - <2m (NI											90		NL NL			NL	1	NL	NL	310						
HSL A - Direct Contact (CRC Care 20										4,400	30	3,300		4,500	6,300	1,400	100	14,000	4,500	12,000	1400					
Intrusive Maintenance Worker - Di										82,000		62,000		85,000	120,000	29,000	1,100	120,000	85,000	130,000	29,000					
EILs (NEPM 2013)		100				1100										170					170					
ESLs - Fine (NEPM 2013)											180		120	1300	5600		65	105	125	105						
ESLs - Coarse (NEPM 2013)											180		120	300	2800		50	85	70	45		0.7				
Management Limits - Fine Soil (NEF	PM 2013)									800		1,000		3,500	10,000											
Management Limits - Coarse Soil (N	NEPM 2013)									700		1,000		2,500	10,000											
		•	•	•		•	•	•						•												-
Sample ID	Sampled Date																									
BH1 0.2-0.4	9/11/2023	2	<0.3	6.5	12	10	3.0	27	< 0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	0.5	0.6	0.7	0.6	5.8
BH1 1.0-1.1	9/11/2023	2	<0.3	8.8	<0.5	9	0.7	4.7	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
BH2 0.5-0.7	9/11/2023	2	<0.3	9.1	7.8	11	3.5	24	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
BH3 0.2-0.4	9/11/2023	4	<0.3	23	2.1	13	2.3	22	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
BH3 1.5-1.6	9/11/2023	2	<0.3	5.0	8.7	16	2.1	47	<0.05	<25	<25	<25	<25	91	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	0.4	0.4	0.5	0.5	4.2
BH4 0.2-0.3	9/11/2023	2	<0.3	4.8	3.8	8	2.3	19	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	1.1
BH5 0.2-0.3	9/11/2023	4	<0.3	28	3.3	14	5.3	22	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
BH6 0.3-0.4	9/11/2023	2	<0.3	5.4	8.5	6	1.5	24	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
BH7 0.4-0.5	9/11/2023	3	<0.3	6.6	5.8	16	2.1	42	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	0.2	0.2	0.3	0.3	1.9
BH8 0.2-0.3	9/11/2023	2	<0.3	4.5	0.9	7	<0.5	4.9	<0.05	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.2	<0.3	<0.2	<0.8
Statistical Summary		1												ı					,							
Number of Results		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Number of Detects		10	0	10	9	10	9	10	0	0	0	0	0	1	0	0	0	0	0	0	0	3	3	3	3	4
Minimum Detect		2	0	4.5	0.9	6	0.7	4.7	0	0	0	0	0	91	0	0	0	0	0	0	0	0.2	0.2	0.3	0.3	1.1
Maximum Detect		4	0	28	12	16	5.3	47	0	0	0	0	0	91	0	0	0	0	0	0	0	0.5	0.6	0.7	0.6	5.8
Average Concentration		2.5	-	10.17	5.87778	11	2.53333	23.66	-	-	-	-	-	91	-	-	-	-	-	-	-	-	-	-	-	-
Number of Guideline Exceedances		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	.						ОСР							OPP	PCB
HUNTER ENVIRONMENTAL CONSULTING	mg/kg	ng/kg	OOO-,d'o mg/kg	mg/kg	Gamma Chlordane	Alpha Chlordane	Dieldrin mg/kg	Alpha Endosulfan	Beta Endosulfan	mg/kg	B8/kg	Hexachlorobenzene (HCB)	% Methoxychlor	Chlorpyrifos (Chlorpyrifos Ethyl)	ৰ জু Total PCBs (Arochlors)
Limit of Reporting	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	1
HIL A (NEPM 2013)	6	240	240	240	50	50	6	270	270	10	6	10	300	160	1
HSL A - Direct Contact (CRC Care 2011)															
Intrusive Maintenance Worker - Direct Contact (CRC Care 2011)															
EILs (NEPM 2013)				180											
ESLs - Coarse/Fine (NEPM 2013)															

Sample ID	Sampled Date															
BH1 0.2-0.4	9/11/2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	<1
BH1 1.0-1.1	9/11/2023	N.A.														
BH2 0.5-0.7	9/11/2023	N.A.														
BH3 0.2-0.4	9/11/2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	<1
BH3 1.5-1.6	9/11/2023	N.A.														
BH4 0.2-0.3	9/11/2023	N.A.														
BH5 0.2-0.3	9/11/2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	<1
BH6 0.3-0.4	9/11/2023	N.A.														
BH7 0.4-0.5	9/11/2023	N.A.														
BH8 0.2-0.3	9/11/2023	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	<1

Statistical Summary															
Number of Results	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Detect	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Detect	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Average Concentration	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note:

⁽¹⁾ The NEPM presents a cumulative HIL for DDD, DDE and DDT (240 mg/kg). Concentrations for each of these compounds are presented separately above and conservatively assessed against the HIL.

⁽²⁾ The NEPM presents a cumulative HIL for Aldrin and Dieldrin (6 mg/kg). Concentrations for each of these compounds are presented separately above and conservatively assessed against the HIL.

⁽³⁾ The NEPM presents onee HIL for Endosulfan (270 mg/kg). Concentrations for Alpha Endosulfan and Beta Endosulfan are presented separately above and conservatively assessed against the HIL.

Soil Screening Criteria

HUNTER	LOR	Unit	Primary Sample	QA Sample	RPD
ENVIRONMENTAL CONSULTING	LON	Onit	ВН4 0.2-0.3	DUP	NP D
TRH					
TRH C6-C10 Fraction	25	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH C6-C10 less BTEX	25	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction	25	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction less N	25	mg/kg	12.5	12.5	0.0
TRH >C16-C34 Fraction	90	mg/kg	45	45	0.0
TRH >C34-C40 Fraction	120	mg/kg	60	60	0.0
Naphthalene	0.1	mg/kg	0.05	0.05	0.0
ВТЕХ		U, B			1
Benzene	0.1	mg/kg	0.05	0.05	0.0
Ethylbenzene	0.1	mg/kg	0.05	0.05	0.0
m&p-Xylenes	0.2	mg/kg	<u>0.1</u>	0.1	0.0
o-Xylene	0.1	mg/kg	0.05	0.05	0.0
Toluene	0.1	mg/kg	0.05	0.05	0.0
Xylenes - Total	0.3	mg/kg	0.15	0.15	0.0
Metals	0.5	1116/116	<u>0.15</u>	0.13	0.0
Arsenic	1	mg/kg	2	2	0.0
Cadmium	0.3	mg/kg	<u>0.15</u>	0.15	0.0
Chromium	0.5	mg/kg	4.8	12	-85.7
Copper	0.5	mg/kg	3.8	6.8	-56.6
Lead	1	mg/kg	8	9	-11.8
Nickel	0.5	mg/kg	2.3	4.2	-58.5
Zinc	2		19	20	-58.5
		mg/kg			_
Mercury	0.05	mg/kg	<u>0.025</u>	<u>0.025</u>	0.0
PAH	0.1		0.05	0.05	0.0
Acenaphthene	0.1	mg/kg	<u>0.05</u>	0.05	0.0
Acenaphthylene Anthracene	0.1	mg/kg	<u>0.05</u>	<u>0.05</u> <u>0.05</u>	0.0
Benz(a)anthracene	0.1	mg/kg	<u>0.05</u> 0.05	<u>0.05</u>	0.0
Benzo(a)pyrene	0.1	mg/kg mg/kg	0.05	0.05	0.0
Benzo(b&j)fluoranthene	0.1	mg/kg	0.05	0.05	0.0
Benzo(g.h.i)perylene	0.1	mg/kg	<u>0.05</u>	0.05 0.1	-66.7
Benzo(k)fluoranthene	0.1	mg/kg	<u>0.05</u>	0.1	-66.7
Chrysene	0.1	mg/kg	0.05	0.05	0.0
Dibenz(a.h)anthracene	0.1	mg/kg	0.05	0.05	0.0
Fluoranthene	0.1	mg/kg	0.2	0.05	120.0
Fluorene	0.1	mg/kg	0.05	0.05	0.0
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	<u>0.05</u>	0.05	0.0
Naphthalene	0.1	mg/kg	0.05	0.05	0.0
Phenanthrene	0.1	mg/kg	0.1	0.05	66.7
Pyrene	0.1	mg/kg	0.2	0.05	120.0
Total PAH	0.8	mg/kg	1.1	0.4	93.3

Notes

 ${\sf RPD} = {\sf Relative\ Percentage\ Difference}.$

RPD assessment criteria were adopted in general accordance with NEPM Schedule B3 Section 3.5 (NEPC 2013). RPDs where both primary and duplicate results were < 2.5 times the LOR were not considered. RPDs where primary and/or duplicate results were >2.5 times the LOR were assessed based on a threshold of +/- 30%. Exceedence of this threshold triggered consideration of associated data quality.

					Me	etals			
	JNTER NMENTAL CONSULTING	전 Arsenic	孙 Cadmium	лум Сhromium	ив/L	read W.V.	Nckel	ZIUC µg/L	Mercury Mercury
Limit of Reportir	ng	1	0.1	1	1	1	1	5	0.0001
Sample ID RINS	Sampled Date 9/11/2023	<1	<0.1	<1	<1	<1	<1	<5	<0.0001
Statistical Sumn	nary								
Number of Resu	ılts	1	1	1	1	1	1	1	1
Number of Dete	ects	0	0	0	0	0	0	0	0
Minimum Detec	t	-	-	-	-	-	-	-	-
Maximum Detec	ct	-	-	-	-	-	-	-	-
Average Concen	tration	-	-	-	-	-	-	-	-
Number of Guid	leline Exceedances	0	0	0	0	0	0	0	0

Annex G

Photograph 1 – Southern Fill mound facing Southeast.

Date - 09/11/2023

Photograph 2 – Northern Fill mound facing North

Date - 09/11/2023

Photograph 3 – Entry to Site facing North.

Date - 09/11/2023

Photograph 4 – Fill material consistent throughout Site.

Date - 09/11/2023

Photograph 5 – Range of containers/equipment stored on Site

Date - 09/11/2023

Photograph 6 – Ride on lawn mower stored on the Northern Fill mound.

Date - 09/11/2023

Annex H

ANALYTICAL REPORT

CLIENT DETAILS

LABORATORY DETAILS

Laboratory

Address

Contact Jake Duck

Client HUNTER ENVIRONMENTAL CONSULTING PTY LTD

Address PO BOX 3127

THORNTON NSW 2322

Manager Huong Crawford

SGS Alexandria Environmental

Unit 16, 33 Maddox St Alexandria NSW 2015

61 2 49661844 Telephone +61 2 8594 0400

Facsimile (Not specified) Facsimile +61 2 8594 0499

Email jd@hunterenviro.com.au Email au.environmental.sydney@sgs.com

 Project
 E0137 (Newport)
 SGS Reference
 SE256498 R0

 Order Number
 HEC0276
 Date Received
 10/11/2023

 Samples
 12
 Date Reported
 20/11/2023

COMMENTS

Telephone

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN

Chemist

Huong CRAWFORD

Production Manager

Kamrul AHSAN

Senior Chemist

Ly Kim HA

Organic Section Head

kmln

Shane MCDERMOTT

Inorganic/Metals Chemist

Teresa NGUYEN
Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/11/2023 SE256498.001	9/11/2023 SE256498.002	- 9/11/2023 SE256498.003	9/11/2023 SE256498.004	9/11/2023 SE256498.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			2011	00"	2011		00"
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			DUP
			SOIL
			9/11/2023
PARAMETER	UOM	LOR	SE256498.011
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1

20/11/2023 Page 2 of 16

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2023	- 9/11/2023	- 9/11/2023	- 9/11/2023	- 9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.002	SE256498.003	SE256498.004	SE256498.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			SOIL -	SOIL -	SOIL -	SOIL	SOIL -
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			DUP
			SOIL
			- 9/11/2023
PARAMETER	UOM	LOR	SE256498.011
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

20/11/2023 Page 3 of 16

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.002	SE256498.003	SE256498.004	SE256498.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	47
TRH C29-C36	mg/kg	45	<45	<45	60	<45	65
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	91
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			SOIL - 9/11/2023	SOIL - 9/11/2023	SOIL - 9/11/2023	SOIL - 9/11/2023	SOIL - 9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	54	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			DUP
PARAMETER	UOM	LOR	SOIL - 9/11/2023 SE256498.011
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	65
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210

20/11/2023 Page 4 of 16

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			ВПТ 0.2-0.4	БП 1.0-1.1	BHZ 0.5-0.7	ВПЗ 0.2-0.4	БПЗ 1.5-1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/11/2023 SE256498.001	9/11/2023 SE256498.002	9/11/2023 SE256498.003	9/11/2023 SE256498.004	9/11/2023 SE256498.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.0	<0.1	<0.1	<0.1	0.7
Anthracene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	0.1	1.4	<0.1	0.1	0.1	1.0
Pyrene	mg/kg	0.1	1.4	<0.1	0.1	0.1	0.9
Benzo(a)anthracene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	0.4	<0.1	<0.1	<0.1	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	0.3
Benzo(k)fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	0.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.3
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.4	<0.1	0.1	<0.1	0.3
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.6</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.4</td></lor=0*<>	TEQ (mg/kg)	0.2	0.6	<0.2	<0.2	<0.2	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.7</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.5</td></lor=lor*<>	TEQ (mg/kg)	0.3	0.7	<0.3	<0.3	<0.3	0.5
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.6</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.5</td></lor=lor>	TEQ (mg/kg)	0.2	0.6	<0.2	<0.2	<0.2	0.5
Total PAH (18)	mg/kg	0.8	5.8	<0.8	<0.8	<0.8	4.2
Total PAH (NEPM/WHO 16)	mg/kg	0.8	5.8	<0.8	<0.8	<0.8	4.2

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			BH4 0.2-0.3	BH5 0.2-0.3	ВН6 0.3-0.4	BH7 0.4-0.5	ВН8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/11/2023 SE256498.006	9/11/2023 SE256498.007	9/11/2023 SE256498.008	9/11/2023 SE256498.009	9/11/2023 SE256498.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	0.3	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	0.5	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	0.4	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.3	<0.2
Total PAH (18)	mg/kg	0.8	1.1	<0.8	<0.8	1.9	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.1	<0.8	<0.8	1.9	<0.8

20/11/2023 Page 5 of 16

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/11/2023 (continued)

			DUP SOIL
PARAMETER	UOM	LOR	9/11/2023 SE256498.011
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

20/11/2023 Page 6 of 16

OC Pesticides in Soil [AN420] Tested: 15/11/2023

			BH1 0.2-0.4	BH3 0.2-0.4	BH5 0.2-0.3	BH8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			- 9/11/2023	- 9/11/2023	- 9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.004	SE256498.007	SE256498.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
rans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
sodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fotal CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1

20/11/2023 Page 7 of 16

OP Pesticides in Soil [AN420] Tested: 15/11/2023

			BH1 0.2-0.4	BH3 0.2-0.4	BH5 0.2-0.3	BH8 0.2-0.3
PARAMETER	UOM	LOR	SOIL - 9/11/2023 SE256498.001	SOIL - 9/11/2023 SE256498.004	SOIL - 9/11/2023 SE256498.007	SOIL - 9/11/2023 SE256498.010
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

20/11/2023 Page 8 of 16

PCBs in Soil [AN420] Tested: 15/11/2023

			BH1 0.2-0.4	BH3 0.2-0.4	BH5 0.2-0.3	BH8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL
			9/11/2023	- 9/11/2023	- 9/11/2023	- 9/11/2023
PARAMETER	иом	LOR	SE256498.001	SE256498.004	SE256498.007	SE256498.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

20/11/2023 Page 9 of 16

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2023	9/11/2023	- 9/11/2023	- 9/11/2023	- 9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.002	SE256498.003	SE256498.004	SE256498.005
Arsenic, As	mg/kg	1	2	2	2	4	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	6.5	8.8	9.1	23	5.0
Copper, Cu	mg/kg	0.5	12	<0.5	7.8	2.1	8.7
Lead, Pb	mg/kg	1	10	9	11	13	16
Nickel, Ni	mg/kg	0.5	3.0	0.7	3.5	2.3	2.1
Zinc, Zn	mg/kg	2	27	4.7	24	22	47

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
Arsenic, As	mg/kg	1	2	4	2	3	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	4.8	28	5.4	6.6	4.5
Copper, Cu	mg/kg	0.5	3.8	3.3	8.5	5.8	0.9
Lead, Pb	mg/kg	1	8	14	6	16	7
Nickel, Ni	mg/kg	0.5	2.3	5.3	1.5	2.1	<0.5
Zinc, Zn	mg/kg	2	19	22	24	42	4.9

			DUP
			SOIL
			- 9/11/2023
PARAMETER	UOM	LOR	SE256498.011
Arsenic, As	mg/kg	1	2
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	12
Copper, Cu	mg/kg	0.5	6.8
Lead, Pb	mg/kg	1	9
Nickel, Ni	mg/kg	0.5	4.2
Zinc, Zn	mg/kg	2	20

20/11/2023 Page 10 of 16

SE256498 R0

Mercury in Soil [AN312] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.002	SE256498.003	SE256498.004	SE256498.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DUP
			SOIL
			- 9/11/2023
PARAMETER	UOM	LOR	SE256498.011
Mercury	mg/kg	0.05	<0.05

20/11/2023 Page 11 of 16

SE256498 R0

Moisture Content [AN002] Tested: 15/11/2023

			BH1 0.2-0.4	BH1 1.0-1.1	BH2 0.5-0.7	BH3 0.2-0.4	BH3 1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.001	SE256498.002	SE256498.003	SE256498.004	SE256498.005
% Moisture	%w/w	1	13.0	17.1	10.2	15.5	14.9

			BH4 0.2-0.3	BH5 0.2-0.3	BH6 0.3-0.4	BH7 0.4-0.5	BH8 0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023
PARAMETER	UOM	LOR	SE256498.006	SE256498.007	SE256498.008	SE256498.009	SE256498.010
% Moisture	%w/w	1	15.1	15.4	14.8	17.2	12.8

			DUP
			SOIL
			9/11/2023
PARAMETER	UOM	LOR	SE256498.011
% Moisture	%w/w	1	14.3

20/11/2023 Page 12 of 16

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 13/11/2023

			RINS
			WATER -
PARAMETER	UOM	LOR	9/11/2023 SE256498.012
Arsenic	μg/L	1	<1
Cadmium	μg/L	0.1	<0.1
Copper	μg/L	1	<1
Chromium	μg/L	1	<1
Nickel	μg/L	1	<1
Lead	μg/L	1	<1
Zinc	μg/L	5	<5

20/11/2023 Page 13 of 16

SE256498 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 13/11/2023

			RINS
			WATER
			9/11/2023
PARAMETER	UOM	LOR	SE256498.012
Mercury	mg/L	0.0001	<0.0001

20/11/2023 Page 14 of 16

SE256498 R0

METHOD _

— METHODOLOGY SUMMARY —

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

ΔN020

Unpreserved water sample is filtered through a $0.45\mu m$ membrane filter and acidified with nitric acid similar to APHA3030B.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN318

Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

ΔN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

 $\label{thm:calculated} \mbox{Total PAH calculated from individual analyte detections at or above the limit of reporting} \ .$

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

20/11/2023 Page 15 of 16

FOOTNOTES -

* NATA accreditation does not cover the performance of this service.

* Indicative data, theoretical holding time exceeded.

*** Indicates that both * and ** apply.

- Not analysed.

NVL Not validated.

IS Insufficient sample for

LNR analysis.

Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

20/11/2023 Page 16 of 16

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS _

Contact Jake Duck Manager Huong Crawford

Client HUNTER ENVIRONMENTAL CONSULTING PTY LTD Laboratory SGS Alexandria Environmental

Address PO BOX 3127 Address Unit 16, 33 Maddox St
THORNTON NSW 2322 Alexandria NSW 2015

Telephone 61 2 49661844 Telephone +61 2 8594 0400

Facsimile (Not specified) Facsimile +61 2 8594 0499

Facsimile id@hunterenviro.com.au Fmail au.environmental.syc

Email jd@hunterenviro.com.au Email au.environmental.sydney@sgs.com

ProjectE0137 (Newport)SGS ReferenceSE256498 R0Order NumberHEC0276Date Received10 Nov 2023Samples12Date Reported20 Nov 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate PAH (Polynuclear Aromatic Hydrocarbons) in Soil 1 item

Duplicate Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES 1 item

SAMPLE SUMMARY

Sample counts by matrix
Date documentation received
Samples received without headspace
Sample container provider
Samples received in correct containers
Sample cooling method
Complete documentation received

11 Soil, 1 Water 10/11/2023 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 14.4°C Standard Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Mercury (dissolved) in Water	Method: ME-(AU)-[ENV]AN311(Perth)/AN312
------------------------------	---

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RINS	SE256498.012	LB296298	09 Nov 2023	10 Nov 2023	07 Dec 2023	13 Nov 2023	07 Dec 2023	13 Nov 2023

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023
DUP	SE256498.011	LB296721	09 Nov 2023	10 Nov 2023	07 Dec 2023	15 Nov 2023	07 Dec 2023	17 Nov 2023

Moisture Content Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023
DUP	SE256498.011	LB296710	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	20 Nov 2023	17 Nov 2023

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
DUP	SE256498.011	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
DUP	SE256498.011	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Name Sample No. QC Ref

Method: ME-(AU)-[ENV]AN420

20/11/2023 Page 2 of 20

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
DUP	SE256498.011	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
DUP	SE256498.011	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023
DUP	SE256498.011	LB296708	09 Nov 2023	10 Nov 2023	07 May 2024	15 Nov 2023	07 May 2024	17 Nov 2023

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

RINS SE256498.012 LB296281 09 Nov 2023 10 Nov 2023 07 May 2024	13 Nov 2023 07 May 2024 13 Nov 2023

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

· ·	*							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023
DUP	SE256498.011	LB296674	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	25 Dec 2023	20 Nov 2023

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Name Sample No. QC Ref

20/11/2023 Page 3 of 20

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
DUP	SE256498.011	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

•								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.2-0.4	SE256498.001	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH1 1.0-1.1	SE256498.002	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH2 0.5-0.7	SE256498.003	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH3 0.2-0.4	SE256498.004	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH3 1.5-1.6	SE256498.005	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH4 0.2-0.3	SE256498.006	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH5 0.2-0.3	SE256498.007	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH6 0.3-0.4	SE256498.008	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH7 0.4-0.5	SE256498.009	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
BH8 0.2-0.3	SE256498.010	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023
DUP	SE256498.011	LB296676	09 Nov 2023	10 Nov 2023	23 Nov 2023	15 Nov 2023	23 Nov 2023	20 Nov 2023

20/11/2023 Page 4 of 20

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

					-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	98
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	100
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	102
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	99
Pesticides in Soil				Method: ME	-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	92
- macrosspriority (ourrogato)	BH3 0.2-0.4	SE256498.004	%	60 - 130%	102
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	93
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	111
d14-p-terphenyl (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	92
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	107
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	94
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	109
LL /Debrauelees Assessée Lhudsseethers No Cell					
NH (Polynuclear Aromatic Hydrocarbons) in Soil					-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery ^c
-fluorobiphenyl (Surrogate)	BH1 0.2-0.4	SE256498.001	%	70 - 130%	92
	BH1 1.0-1.1	SE256498.002	%	70 - 130%	93
	BH2 0.5-0.7	SE256498.003	%	70 - 130%	103
	BH3 0.2-0.4	SE256498.004	%	70 - 130%	102
	BH3 1.5-1.6	SE256498.005	%	70 - 130%	105
	BH4 0.2-0.3	SE256498.006	%	70 - 130%	104
	BH5 0.2-0.3	SE256498.007	%	70 - 130%	93
	BH6 0.3-0.4	SE256498.008	%	70 - 130%	95
	BH7 0.4-0.5	SE256498.009	%	70 - 130%	120
	BH8 0.2-0.3	SE256498.010	%	70 - 130%	111
	DUP	SE256498.011	%	70 - 130%	125
114-p-terphenyl (Surrogate)	BH1 0.2-0.4	SE256498.001	%	70 - 130%	92
	BH1 1.0-1.1	SE256498.002	%	70 - 130%	94
	BH2 0.5-0.7	SE256498.003	%	70 - 130%	102
	BH3 0.2-0.4	SE256498.004	%	70 - 130%	107
	BH3 1.5-1.6	SE256498.005	%	70 - 130%	101
	BH4 0.2-0.3	SE256498.006	%	70 - 130%	105
	BH5 0.2-0.3	SE256498.007	%	70 - 130%	94
	BH6 0.3-0.4	SE256498.008	%	70 - 130%	92
	BH7 0.4-0.5	SE256498.009	%	70 - 130%	116
	BH8 0.2-0.3	SE256498.010	%	70 - 130%	109
	DUP	SE256498.011	%	70 - 130%	111
15-nitrobenzene (Surrogate)	BH1 0.2-0.4	SE256498.001	%	70 - 130%	94
	BH1 1.0-1.1	SE256498.002	%	70 - 130%	98
	BH2 0.5-0.7	SE256498.003	%	70 - 130%	101
	BH3 0.2-0.4	SE256498.004	%	70 - 130%	104
	BH3 1.5-1.6	SE256498.005	%	70 - 130%	109
	BH4 0.2-0.3	SE256498.006	%	70 - 130%	105
	BH5 0.2-0.3	SE256498.007	%	70 - 130%	98
	BH6 0.3-0.4	SE256498.008	%	70 - 130%	100
	BH7 0.4-0.5	SE256498.009	%	70 - 130%	124
	BH8 0.2-0.3	SE256498.010	%	70 - 130%	117
	DUP	SE256498.011	%	70 - 130%	132 ①
CBs in Soil				Method: ME	-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery '
CMX (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	96
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	98
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	100
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	97
DC's in Soil					-(AU)-[ENV]AN
				Wiedfoot ME	6 tol Imiaahan

20/11/2023 Page 5 of 20

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Woulder, Interpretation					- (10) [-11] 1110
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	86
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	87
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	86
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	86
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	90
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	87
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	82
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	81
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	85
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	88
	DUP	SE256498.011	%	60 - 130%	99
d4-1,2-dichloroethane (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	77
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	82
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	83
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	82
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	87
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	82
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	79
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	77
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	81
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	84
	DUP	SE256498.011	%	60 - 130%	82
d8-toluene (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	83
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	86
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	86
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	84
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	90
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	84
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	83
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	81
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	84
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	87
	DUP	SE256498.011	%	60 - 130%	94

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	86
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	87
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	86
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	86
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	90
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	87
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	82
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	81
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	85
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	88
	DUP	SE256498.011	%	60 - 130%	99
d4-1,2-dichloroethane (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	77
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	82
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	83
	BH3 0.2-0.4	SE256498.004	%	60 - 130%	82
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	87
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	82
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	79
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	77
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	81
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	84
	DUP	SE256498.011	%	60 - 130%	82
d8-toluene (Surrogate)	BH1 0.2-0.4	SE256498.001	%	60 - 130%	83
	BH1 1.0-1.1	SE256498.002	%	60 - 130%	86
	BH2 0.5-0.7	SE256498.003	%	60 - 130%	86

20/11/2023 Page 6 of 20

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

· · · · · · · · · · · · · · · · · · ·					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH3 0.2-0.4	SE256498.004	%	60 - 130%	84
	BH3 1.5-1.6	SE256498.005	%	60 - 130%	90
	BH4 0.2-0.3	SE256498.006	%	60 - 130%	84
	BH5 0.2-0.3	SE256498.007	%	60 - 130%	83
	BH6 0.3-0.4	SE256498.008	%	60 - 130%	81
	BH7 0.4-0.5	SE256498.009	%	60 - 130%	84
	BH8 0.2-0.3	SE256498.010	%	60 - 130%	87
	DUP	SE256498.011	%	60 - 130%	94

20/11/2023 Page 7 of 20

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Number	Parameter	Units	LOR	Result
LB296298.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB296721.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB296674.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.1
	Endrin	mg/kg	0.2	<0.1
	Beta Endosulfan	mg/kg	0.2	<0.1
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	90

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB296674.001	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
Surrogates	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	2-fluorobiphenyl (Surrogate)	%	<u>-</u>	91
	d14-p-terphenyl (Surrogate)	%	-	100

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB296674.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1

20/11/2023 Page 8 of 20

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB296674.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	87
		2-fluorobiphenyl (Surrogate)	%	-	91
		d14-p-terphenyl (Surrogate)	%	-	100

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB296674.001	Arochlor 1016	mg/kg	0.2	<0.2
	Arochlor 1221	mg/kg	0.2	<0.2
	Arochlor 1232	mg/kg	0.2	<0.2
	Arochlor 1242	mg/kg	0.2	<0.2
	Arochlor 1248	mg/kg	0.2	<0.2
	Arochlor 1254	mg/kg	0.2	<0.2
	Arochlor 1260	mg/kg	0.2	<0.2
	Arochlor 1262	mg/kg	0.2	<0.2
	Arochlor 1268	mg/kg	0.2	<0.2
	Total PCBs (Arochlors)	mg/kg	1	<1
Surrogate	es TCMX (Surrogate)	%	-	88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB296708.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB296281.001	Arsenic	μg/L	1	<1
	Cadmium	μg/L	0.1	<0.1
	Chromium	μg/L	1	<1
	Copper	μg/L	1	<1
	Lead	μg/L	1	<1
	Nickel	μg/L	1	<1
	Zinc	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB296674.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	ma/ka	110	<110

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB296676.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1

20/11/2023 Page 9 of 20

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB296676.001	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
	d8-toluene (Surrogate)		%	-	90
		Bromofluorobenzene (Surrogate)	%	-	88
	Totals	Total BTEX*	mg/kg	0.6	<0.6


Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB296676.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88

20/11/2023 Page 10 of 20

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256548.001	LB296298.009	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296721.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE256603.001	LB296721.020	Mercury	mg/kg	0.05	<0.05	<0.05	164	0

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296710.011	% Moisture	%w/w	1	12.8	14.4	37	12
SE256532.003	LB296710.016	% Moisture	%w/w	1	14.8	15.2	37	2

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296674.014	Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0
		o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.1	200	0
		Endrin	mg/kg	0.2	<0.2	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.1	200	0
		o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Total OC VIC EPA	mg/kg	1	<1	<1	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	2

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296674.014	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0

20/11/2023 Page 11 of 20

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OP Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296674.014		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.5	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	9

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original Duplicate

Method: ME-(AU)-[ENV]AN420

LOR Original Duplicate Criteria % RPD %

SE256498.010	LB296674.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>166</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	166	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>133</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	133	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	111	85
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.5	30	6
		carrogatoc	2-fluorobiphenyl (Surrogate)	mg/kg		0.6	0.5	30	7
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	30	9
SE256532.003	LB296674.022		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
GL200002.000	LD200074.022		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.1</td><td><0.1</td><td><0.1</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0 <lor="LOR/2*</td" bap="" carcinogenic="" pahs,="" teq=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=0>	mg/kg	0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2="" <lor="LOR*</td" bap="" carcinogenic="" pahs,="" teq=""><td></td><td>0.2</td><td><0.2</td><td><0.3</td><td>134</td><td>0</td></lor=lor>		0.2	<0.2	<0.3	134	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg mg/kg	0.8	0.4	0.5	30	3
		Surroyates	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	30	0
			u 14-p-terpriettyt (outrogate)	ilig/kg	-	0.0	0.0	30	

PCBs in Soil

Original	Duplicate	Parameter	Units	LOR

Method: ME-(AU)-[ENV]AN420

20/11/2023 Page 12 of 20

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296674.014	Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
		Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
	Surrogate	s TCMX (Surrogate)	mg/kg	-	0	0	30	2

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296708.014	Arsenic, As	mg/kg	1	2	2	91	16
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	4.5	4.8	41	7
		Copper, Cu	mg/kg	0.5	0.9	1.4	73	48
		Nickel, Ni	mg/kg	0.5	<0.5	0.6	129	17
		Lead, Pb	mg/kg	1	7	7	45	3
		Zinc, Zn	mg/kg	2	4.9	12	53	87 ②

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256477.006	LB296281.014	Chromium	μg/L	1	110	110	16	2
		Copper	μg/L	1	31	31	18	1
		Lead	μg/L	1	12	13	23	1
		Nickel	μg/L	1	10	10	25	1
		Zinc	μg/L	5	34	34	30	1
SE256548.001	LB296281.019	Arsenic	μg/L	1	2	2	69	5
		Cadmium	μg/L	0.1	<0.1	<0.1	200	0
		Chromium	μg/L	1	16	15	22	5
		Copper	μg/L	1	7	7	30	2
		Lead	μg/L	1	<1	<1	200	0
		Nickel	μg/L	1	2	2	75	0
		Zinc	μg/L	5	<5	<5	200	0

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296674.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE256532.003	LB296674.022		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0

VOC's in Soil

Original Duplicate Parameter Units LOR

Method: ME-(AU)-[ENV]AN433

20/11/2023 Page 13 of 20

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296676.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.6	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.7	8.9	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.8	8.9	50	2
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE256532.003	LB296676.022	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.4	7.9	50	7
			d8-toluene (Surrogate)	mg/kg	-	7.4	8.0	50	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.4	7.9	50	6
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE256498.010	LB296676.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.6	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.7	8.9	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.8	8.9	50	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE256532.003	LB296676.022		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.4	7.9	50	7
			d8-toluene (Surrogate)	mg/kg	-	7.4	8.0	50	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	7.4	7.9	50	6
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

20/11/2023 Page 14 of 20

60 - 140

91

Arochlor 1260

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB296721.002	Mercury	mg/kg	0.05	0.17	0.2	80 - 120	87	

OC Pesticides in Soil	OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420						
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296674.002	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	87
	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	99
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	92
	Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	97
	Endrin	mg/kg	0.2	0.2	0.2	60 - 140	106
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	103
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	ma/ka	_	0.13	0.15	40 - 130	88

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420 Sample Number Units LOR Result Expected Criteria % Recovery %

- ampio italiisoi	· urumoto.	00					110001019 /0
LB296674.002	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.3	2	60 - 140	63
	Diazinon (Dimpylate)	mg/kg	0.5	1.2	2	60 - 140	61
	Dichlorvos	mg/kg	0.5	1.3	2	60 - 140	63
	Ethion	mg/kg	0.2	1.7	2	60 - 140	86
Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	117

Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296674.002	Naphthalene	mg/kg	0.1	3.4	4	60 - 140	85
	Acenaphthylene	mg/kg	0.1	2.9	4	60 - 140	72
	Acenaphthene	mg/kg	0.1	3.5	4	60 - 140	89
	Phenanthrene	mg/kg	0.1	3.4	4	60 - 140	86
	Anthracene	mg/kg	0.1	3.3	4	60 - 140	83
	Fluoranthene	mg/kg	0.1	3.1	4	60 - 140	77
	Pyrene	mg/kg	0.1	4.0	4	60 - 140	100
	Benzo(a)pyrene	mg/kg	0.1	3.1	4	60 - 140	77
Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	99
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	117

PCBs in Soil					N	Method: ME-(AU)-[ENV]AN420)
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria % Recovery %	

mg/kg

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296708.002	Arsenic, As	mg/kg	1	360	318.22	80 - 120	113
	Cadmium, Cd	mg/kg	0.3	4.0	4.81	70 - 130	84
	Chromium, Cr	mg/kg	0.5	44	38.31	80 - 120	115
	Copper, Cu	mg/kg	0.5	330	290	80 - 120	114
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	104
	Lead, Pb	mg/kg	1	96	89.9	80 - 120	107
	Zinc. Zn	ma/ka	2	290	273	80 - 120	108

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296281.002	Arsenic	μg/L	1	21	20	80 - 120	103
	Cadmium	μg/L	0.1	20	20	80 - 120	102
	Chromium	μg/L	1	21	20	80 - 120	104
	Copper	μg/L	1	20	20	80 - 120	102
	Lead	μg/L	1	21	20	80 - 120	105
	Nickel	μg/L	1	21	20	80 - 120	105
	Zinc	μg/L	5	20	20	80 - 120	99

20/11/2023 Page 15 of 20

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296674.002		TRH C10-C14	mg/kg	20	34	40	60 - 140	85
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	87
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	104
	TRH F Bands	TRH >C10-C16	mg/kg	25	36	40	60 - 140	89
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	96
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	102

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

							•	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296676.002	Monocyclic	Benzene	mg/kg	0.1	5.0	5	60 - 140	100
	Aromatic	Toluene	mg/kg	0.1	4.6	5	60 - 140	92
		Ethylbenzene	mg/kg	0.1	4.5	5	60 - 140	91
		m/p-xylene	mg/kg	0.2	9.1	10	60 - 140	91
		o-xylene	mg/kg	0.1	4.7	5	60 - 140	93
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
		d8-toluene (Surrogate)	mg/kg	-	9.2	10	70 - 130	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	10	70 - 130	87

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB296676.002		TRH C6-C10	mg/kg	25	110	92.5	60 - 140	114
		TRH C6-C9	mg/kg	20	91	80	60 - 140	114
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.1	10	70 - 130	91
		Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	10	70 - 130	87
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	78	62.5	60 - 140	125

20/11/2023 Page 16 of 20

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256440.021	LB296298.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	90

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296721.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	104

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296674.004	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	<0.2	2	90
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	<0.5	2	95
		Dichlorvos	mg/kg	0.5	1.5	<0.5	2	77
		Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
		Ethion	mg/kg	0.2	1.8	<0.2	2	90
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
		Total OP Pesticides*	mg/kg	1.7	7.0	<1.7	-	-
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	92

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296674.004	Naphthalene	mg/kg	0.1	4.1	<0.1	4	103
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	4.1	<0.1	4	102
		Acenaphthene	mg/kg	0.1	4.2	<0.1	4	105
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	4.9	1.0	4	96
		Anthracene	mg/kg	0.1	4.0	0.2	4	96
		Fluoranthene	mg/kg	0.1	5.1	1.4	4	91
		Pyrene	mg/kg	0.1	4.9	1.4	4	88
		Benzo(a)anthracene	mg/kg	0.1	0.3	0.3	-	-
		Chrysene	mg/kg	0.1	0.3	0.4	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	0.5	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.2	-	-
		Benzo(a)pyrene	mg/kg	0.1	4.5	0.5	4	102
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.3	0.3	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(ghi)perylene	mg/kg	0.1	0.3	0.4	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td>0.6</td><td>-</td><td>-</td></lor=0*<>	TEQ (mg/kg)	0.2	4.7	0.6	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td>0.6</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.7	0.6	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.8</td><td>0.7</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	4.8	0.7	-	-
		Total PAH (18)	mg/kg	0.8	38	5.8	-	-
	Surroga	tes d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	102
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	100
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	92

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256440.021	LB296281.004	Arsenic	μg/L	1	21	<1	20	103
		Cadmium	μg/L	0.1	21	<0.1	20	103
		Chromium	μg/L	1	21	<1	20	105
		Copper	μg/L	1	21	<1	20	105
		Lead	μg/L	1	22	<1	20	109

20/11/2023 Page 17 of 20

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Trace Metals (Dissolved) in Water by ICPMS (continued)

QC Sample Sample Number Parameter

TRH >C16-C34 (F3)

TRH >C34-C40 (F4)

Method: ME-(AU)-[ENV]AN318

LOR Result Original Spike Recovery%

<120

<120

120

SE256440.021	LB296281.004	Nickel	μg/L	1	21	<1	20	105
		Zinc	μg/L	5	20	<5	20	101
TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(A								J)-[ENV]AN403
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296674.004	TRH C10-C14	mg/kg	20	47	<20	40	114
		TRH C15-C28	mg/kg	45	70	<45	40	121
		TRH C29-C36	mg/kg	45	77	<45	40	110
		TRH C37-C40	mg/kg	100	<100	<100	-	-
		TRH C10-C36 Total	mg/kg	110	190	<110	-	-
		TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
	TRH F	TRH >C10-C16	mg/kg	25	46	<25	40	112
	Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	46	<25	-	-

mg/kg

mg/kg

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

7 0 0 0 111 0 0 11							mou	ioui iiii pito) [mittp attion
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296676.004	Monocyclic	Benzene	mg/kg	0.1	3.9	<0.1	5	78
		Aromatic	Toluene	mg/kg	0.1	4.1	<0.1	5	82
			Ethylbenzene	mg/kg	0.1	4.3	<0.1	5	87
			m/p-xylene	mg/kg	0.2	8.8	<0.2	10	88
			o-xylene	mg/kg	0.1	4.5	<0.1	5	90
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	7.7	10	79
			d8-toluene (Surrogate)	mg/kg	-	7.7	8.3	10	77
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.1	8.6	10	81
		Totals	Total BTEX*	mg/kg	0.6	26	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	13	<0.3	-	-

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE256498.001	LB296676.004		TRH C6-C10	mg/kg	25	87	<25	92.5	93
			TRH C6-C9	mg/kg	20	75	<20	80	93
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	7.9	7.7	10	79
			d8-toluene (Surrogate)	mg/kg	-	7.7	8.3	10	77
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.1	8.6	-	81
		VPH F	Benzene (F0)	mg/kg	0.1	3.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	61	<25	62.5	97

20/11/2023 Page 18 of 20

SGS

MATRIX SPIKE DUPLICATES

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = $100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

20/11/2023 Page 19 of 20

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- ® Recovery failed acceptance criteria due to sample heterogeneity.
- (nequired dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

20/11/2023 Page 20 of 20

1	9	a	2	
A	6	B.	=	S.
4	J	P	4	u

SGS				C	HAI	N C	F C	UST	OD	Y 8	& ANALYS	SIS	RE	QUEST						Page 1	_ of <u>2</u>		
SGS Environmental Services Company N					Company Name: Hunter Enviro F									Name/No:	E0137 (NewPort)								
Unit 16, 33 Maddox S	Address	3:	-	3/62 Sandringham Avenue Thornton 2322									e Order No:		ECC	27	6						
Alexandria NSW 2015			-										Required By:		QT								
Telephone No: (02) 8	5940400													ne:	049	99 160	449						
Facsimile No: (02) 8	5940499	Contact	Name		Jake							_ F	acsimil	le:									
Email: au.samplereceipt.sydney@sgs.com													mail R	esults:	jd@	d@hunterenviro.com.au; results@hunterenviro.com.au							
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	0172	(11)	622	HOLD													
BH1 0.2-0.4	9/11	1		X		1		×						w .									
BH1 1.0-1.1		2				1	×																
BHZ 6.5-0.7		3					×									SGS	EHS	Sydr	ney C	OC	_		
BH3 0.2-0.4		4						×				T				SE	25	64	98				
BH3 1.5-1.6		5					×								7	100000							
BHH 0-2-0.3		6				П	5								_								
BH 5 0.2-0.3		7						×															
BH6 0.3-0.4		8				П	X	1								Γ					_		
BH7 0-4-0.5		9					X																
BH7 1.0-1.1	V			V		V				X													
Relinquished By:	4-	Da	te/Time	e: (9/11					Т	س :Received By	-W	Sta	Merxan	Re	Date	Time	9-11	-13	12:	00		
Relinquished By:		Da	te/Time		1					\top	Received By: Received By:	X	OF.	LL Dave	1	Date/Time 10/11/23 @ 10.25							
Samples Intact: (es) No		Tei	mperat	ture:	Ambi	ent / (hilled			\top	Sample Cooler	Sea	led:	Yes/ No		Labo	ratory		ation N				
		Со	mment	ts:																			
										- 10													

0	00
-	-
	UU

CHAIN OF CUSTODY & ANALYSIS REQUEST

Page 2 of 2

202			CHAIN OF CUSTODY & ANALYSI									SIC) KE	<u> </u>		Fage Z OI Z											
SGS Environmental Services			Company Name:			Hunter Enviro								Project Name/No:			6	FOIST (Newport)									
Unit 16, 33 Maddox Street Alexandria NSW 2015 Telephone No: (02) 85940400		Addres	Address:			3/62 Sandringham Avenue Thornton 2322								Purchase Order No:				HEC0276									
													F	Results	Requ	ired B		STS									
														Telephone:				0499 160 449									
Facsimile No: (02) 85	Contac	Contact Name:			Jake								Facsimile:														
Email: au.samplereceipt.sy	n									Email Results:					jd@hunteren					viro.com.au; results@hunterenviro.com.a							
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL10	6117	CL2	HOLD																	
BH8 0.2-0.3	9/11	10		×		1		X																			
000	1 1 1	11		×			×																				
RINS	7	12	1			1			×			_															
121113		12	1			Ť						-	_		-												
			+-			\vdash							-		-			-									
			-			\vdash				_	-	-	-	-	-	-	_	-									
			-									-	-		_		_	_									
													_				_										
Relinquished By:	Ch.	Da	te/Time	e:	9/	11				F	Receive	d By:	A	5,0	Rul	NOV.	2.4	Da	ate/Ti	ime	101	11/2	2	@ 10	1.25	_	
Relinquished By:		Da	te/Time	e:						F	Received By:						Da	Date/Time 10/11/23 @ 10.25									
Samples Intact: (Yes) No		Te	mperat	ure:	Ambi	ent / C	Hilled			5	Sample	Coole	r Sea	Sealed: Yes/No Lab					aboratory Quotation No:								
Comments:						Ambient / Chilled Sample Cooler S									100 Table 100 Ta												